2018Äê×îÐÂÓ¢¹úÊýѧרҵPhDÕÐÉúÐÅÏ¢£¨¶þ£©

¡º¸ÊËàÁúÍøÕªÒª_2018Äê×îÐÂÓ¢¹úÊýѧרҵPhDÕÐÉúÐÅÏ¢£¨¶þ£©¡»APPLICATION PROCEDURE: This project is advertised in relation to the research areas of the discipline of mathematics. Formal applications can be completed online: https://www.abdn.ac.uk/pgap/login.ph...


APPLICATION PROCEDURE:

This project is advertised in relation to the research areas of the discipline of mathematics. Formal applications can be completed online: https://www.abdn.ac.uk/pgap/login.phpYou should apply for Degree of Doctor of Philosophy in Mathematics, to ensure that your application is passed to the correct person for processing. NOTE CLEARLY THE NAME OF THE SUPERVISOR and EXACT PROJECT TITLE ON THE APPLICATION FORM.

Informal inquiries can be made to Professor B Martin (b.martin@abdn.ac.uk) with a copy of your curriculum vitae and cover letter indicating your interest in the project and why you wish to undertake it. All general enquiries should be directed to the Postgraduate Research School (pgrsadmissions@abdn.ac.uk).

02

Topological methods for image recognition

Aberdeen University È«Ä꿪·Å

Ïà¹Øרҵ£ºApplied Mathematics \ Computer Science &IT \ Mathematics

ÏêϸÐÅÏ¢

Project Deion

The aim of this project is to develop mathematical algorithms for manipulating and classifying medical images. Images from medical scans are typically presented as a collection of voxels (three-dimensional analogues of pixels); one wants to develop automated algorithms to determine from the scan whether, say, an organ is diseased. An efficient way has been found recently to represent voxel images, using ideas from graph theory and topology. In this project, theoretical and practical aspects of this representation will be explored further and the algorithms will be tested on some sample data sets.

The successful candidate will have or expect to have a UK Honours Degree at 2.1 (or equivalent) in Mathematics OR Computing Science.

Essential Background: This project requires a firm grounding in mathematics. Applicants from another discipline should have studied substantial amounts of mathematics ¨C including some pure mathematics ¨C during their degree.

ÍƼö

³±¡¤¿Æ¼¼

Á³Æ¤ºñ¡¢ÇéÉ̸ߡ¢»á½²»°£¡º¼ÖÝÄêÇáÈËÑÛÖеÄÐÂÖ°Òµ£¬¾ÓÈ»ÊÇÕâÑùµÄ¡­¡­

ÔĶÁ(32)

º¼Öݵĸ÷ÀàÖ±²¥»ú¹¹Ò²ÈçÓêºó´ºËñ£¬Ö÷²¥ÐÐÒµ³ÊÏÖ³öÄêÇữ¡¢¹æ·¶»¯ºÍ±ê×¼»¯µÄÇ÷ÊÆ£¬²»ÉÙ´óѧ±ÏÒµÉú°Ñ±ÏÒµºóµÄµÚÒ»·Ý¹¤×÷Ëø¶¨ÔÚÁË¡°Ö÷²¥¡±¡£ À´×ÔÖØÇìµÄ95ºóÕÔÕÔ£¬´óѧ¾Í¶ÁÓÚÒ½¿Æ...

³±¡¤¿Æ¼¼

áéÖÝÊÐáé½­ÇøÓªÉÌ°ì¾ÙÐС°áé½­ÇøÐÅÓÃÖÇÖÎ×ۺϹÜÀíϵͳ¡±ÉÏÏßÆô¶¯ÒÇʽ

ÔĶÁ(11)

¬ÌṩÃñÉú¡¢ÐÅÓᢽðÈÚµÈNÀàÐÅÓó¡¾°¡£Íõ¼ÌÃ÷Ö¸³ö£¬áé½­ÇøÐÅÓÃÖÇÖÎ×ۺϹÜÀíϵͳµÄ¿ª·¢ÉÏÏßÊÇáé½­ÇøÐÅÓÃÌåϵ½¨É蹤×÷È¡µÃµÄ½×¶ÎÐÔÖØÒª³É¹û£¬Ò²ÊÇáéÖÝÊС¶´òÔì¡°ÐÅÓÃʾ·¶Ö®³Ç¡±...

³±¡¤¿Æ¼¼

¿áÎÒ|»ªÎªÐû²¼Ð¹棬ÀÏÓû§Ó­À´¸£Àû£¬ÈÙÒ«Óû§Ò²Ã»±»¡°Å×Æú¡±£¿

ÔĶÁ(34)

º£Ë¼÷è÷ëµÄ³öÏָıäÁË»ªÎªµÄ·¢Õ¹Â·Ïߣ¬Í¬Ê±Ò²¸Ä±äÁËÎÒÃǶԹú²úÊÖ»úµÄÈÏÖª¡£´Ó»ªÎªMate7ʱ´ú¿ªÊ¼£¬»ªÎª¾Í×ßÏòÁË×ÔÖ÷¸ß¶ËµÄ²úƷ·Ïߣ¬Èç½ñµÄMate40ϵÁÐÒѾ­Äܹ»³É¹¦ºÍiPhone12µÈÆì½¢¶Ô...

³±¡¤¿Æ¼¼

СÃ׿Ƽ¼|»ªÎªMate50Pro¸ÅÄî»ú£º97%ÆÁÕ¼±ÈÅäºóÖÃ6¾µÍ·£¬±ÈСÃ×11Ç¿¶àÁË

ÔĶÁ(20)

ÑÓÐøÁ˷dz£¾­µäµÄÆÙ²¼ÆÁÔìÐÍ£¬Ö»²»¹ýÆÙ²¼±ß¿òÏÔµÃÉÔ΢խÁ˵㣬¶øÆÁĻȡÏûÁË´ò¿×¾µÍ·µÄͬʱ£¬»¹Äܹ»ÊµÏÖ3DÈËÁ³Ê¶±ðºÍÆÁϾµÍ·¹¦ÄÜ¡£Æäʵ¾ÍÊǽ«Ç°¾µÍ·²ØÔÚÆÁÄ»ÏÂÃ棬¶ø3DÈËÁ³Ê¶±ð...

³±¡¤¿Æ¼¼

Á³Æ¤ºñ¡¢ÇéÉ̸ߡ¢»á½²»°£¡º¼ÖÝÄêÇáÈËÑÛÖеÄÐÂÖ°Òµ£¬¾ÓÈ»ÊÇÕâÑùµÄ¡­¡­

ÔĶÁ(32)

º¼Öݵĸ÷ÀàÖ±²¥»ú¹¹Ò²ÈçÓêºó´ºËñ£¬Ö÷²¥ÐÐÒµ³ÊÏÖ³öÄêÇữ¡¢¹æ·¶»¯ºÍ±ê×¼»¯µÄÇ÷ÊÆ£¬²»ÉÙ´óѧ±ÏÒµÉú°Ñ±ÏÒµºóµÄµÚÒ»·Ý¹¤×÷Ëø¶¨ÔÚÁË¡°Ö÷²¥¡±¡£ À´×ÔÖØÇìµÄ95ºóÕÔÕÔ£¬´óѧ¾Í¶ÁÓÚÒ½¿Æ...

³±¡¤¿Æ¼¼

áéÖÝÊÐáé½­ÇøÓªÉÌ°ì¾ÙÐС°áé½­ÇøÐÅÓÃÖÇÖÎ×ۺϹÜÀíϵͳ¡±ÉÏÏßÆô¶¯ÒÇʽ

ÔĶÁ(11)

¬ÌṩÃñÉú¡¢ÐÅÓᢽðÈÚµÈNÀàÐÅÓó¡¾°¡£Íõ¼ÌÃ÷Ö¸³ö£¬áé½­ÇøÐÅÓÃÖÇÖÎ×ۺϹÜÀíϵͳµÄ¿ª·¢ÉÏÏßÊÇáé½­ÇøÐÅÓÃÌåϵ½¨É蹤×÷È¡µÃµÄ½×¶ÎÐÔÖØÒª³É¹û£¬Ò²ÊÇáéÖÝÊС¶´òÔì¡°ÐÅÓÃʾ·¶Ö®³Ç¡±...

¶¯Âþ

ÍõÕßÈÙÒ«Âþ»­¡¢ÊØÔ¼ÓÃÌ×·¶Ô×Ô¼ºµÜµÜ£¬µ«Ã»Ïëµ½µÜµÜ²»°´Ì×·À´£¿

ÔĶÁ(30)

µ«Ã»Ïëµ½µÜµÜ¸ù±¾²»°´Ì×·À´£¬Ö±½ÓÌø¹ýÁËËùÓÐÊ߲ˣ¬ÕâÈÃÊØÔ¼ºÜÊÇ¿àÄÕ¡£°ÙÀïÊØÔ¼Ó¦¸ÃÔõÑù²ÅÄܸĵôµÜµÜÌôʳµÄ»µÃ«²¡£¬ÈÃËû¶à³ÔÊ߲ˣ¬¶à³ÔË®¹ûÄØ£¿Ò»¸öÈËÖªµÀ×Ô¼ºÎªÊ²Ã´¶ø»î£¬¾Í...

³±¡¤¿Æ¼¼

ÔËÓªÉÌ|ÃÀ¹úÈ¡ÏûÍËÊУ¡±äÁ³À´µÃÌ«¿ì£¬Èý´óÔËÓªÉÌʼÁÏδ¼°£¿

ÔĶÁ(44)

¸Û¹É5ÈÕÔç¼äÐÐÇéÏÔʾ£¬ÖйúµçÐÅ¡¢ÖйúÒƶ¯¡¢ÖйúÁªÍ¨¾ùÕdz¬5%¡£´ÓÀÕÁîÍËÊе½È¡ÏûÍËÊУ¬ÖмäÒ²²»¹ýºÄ·ÑÁË5ÌìµÄʱ¼ä£¬ËûÃÇÕâ¸ö±äÁ³µÄËٶȹûÈ»ÊÇ¡°ÊÀ½çµÚÒ»¡±£¬Èý´óÔËÓªÉ̹À¼Æµ½ÏÖ...

»á¡¤Éú»î

Âþ»ÄÕ¦°ì

ÔĶÁ(28)

ÓÐʱ¿Ì·¢Ã÷¿ÉÒÔ¿´µÄҲû±£³ÖÏÂÈ¥£¬¾ÍÊDz»¸ÐÐËȤ£¬»¹ÒªµÈ´ýÕæÕý°®ºÃµÄ·¬°¡...

³±¡¤¿Æ¼¼

Áãë´Íæ¼Ò|Èý¹úÖ¾Õ½ÂÔ°æ:ÄÚÕþ½«Íê³ÉÒ»´Î10000Õ½¹¦µÄÊÆÈçÆÆÖñ¡¢ÏòËÀ¶øÉú³É¾Í

ÔĶÁ(11)

ÆäʵÕâЩ³É¾ÍÖ»ÊÇ¿´ÆðÀ´ÄÑ£¬ÎÒ¾õµÃ²ß»®¶¼ÒѾ­¸øÄãÏëºÃ°ì·¨ÁË¡£ÏÂÃæÊÇÄãÐèÒª×öµÄ×¼±¸³É¾Í£ºµÇ·åÔ켫¡¢ÓñøÈçÉñ¡¢ÊÆÈçÆÆÖñ¡¢ÏòËÀ¶øÉúÐèÒª×öµÄ×¼±¸²ÄÁÏ£º1¡¢Ð¡ºÅ1¸ö»òÕßС»ï°é1ÈË...

¶¯Âþ

´óÕ½|¡¶¸ßУ֮Éñ¡·ÉÏÑÝ¡°ÌæÉí¡±´óÕ½£¬Õⲿз¬Ô½À´Ô½ÓÐÒâ˼ÁË£¡

ÔĶÁ(19)

È»¶øÔ¤ÈȲ¿·Ö¾ÍºÜÎüÒýÈË£¬¸ü±ð˵ÕæÕýµÄ¾çÇéÁË¡£ÔÚ¶¯»­µÚ¶þ¼¯£¬ÄÐÖ÷³ÂëÀûÒòΪ˽×Ô¸ÉɬËûÈËÕ½¶·£¬±»²ÃÅдø×ßÁË£¬¹ØÓÚ³ÂëÀûµÄ´¦·ÖÔÚµÚÈý¼¯Ò²ÒѾ­¸ø³ö´ð°¸¡£ÄDZãÊÇÈóÂëÀûºÍ²Ã...

³±¡¤¿Æ¼¼

Ò»¼ÓNordn10 5gºÍ100¼´½«·¢²¼£¬ÖеͶËÊÖ»ú£¿

ÔĶÁ(30)

ÆäʵÏÖÔÚÄܹ»¿´³öÀ´µÄÒ»¼þÊ £¬ Ò»¼ÓÏÖÔÚÒ²¿ªÊ¼Öð½¥Ôö¼Ó×Ô¼ºµÄ²úÆ·ÊýÁ¿ £¬ µ±È»¾ÍÊÇ˵ÏÖÔÚ²»¹âÊÇרÃÅ×öÆì½¢ÊÖ»úÁË £¬ µ±È» £¬ ÕâÊÇÒ»¸öËãÊDZ»¶¯µÄ¸Ä±ä £¬ Ò»¼Ó¿´ÆðÀ´Òª·¢²¼ÐÂÆ·ÁË...