学人工智能必知:人工智能的发展史

1.2人工智能的发展史

人工智能的研究不仅与对人的思维研究直接相关,而且和许多其它学科领域关系密切。因此说到人工智能的历史,应当上溯到历史上一些伟大的科学家和思想家所作的贡献,他们为人工智能研究积累了充分的条件和基础理论。这里仅列举几位重要的代表人物。

◆古希腊伟大的哲学家、思想家Aristotle(亚里士多德)(公元前384-322),他的主要贡献是为形式逻辑奠定了基础。形式逻辑是一切推理活动的最基本的出发点。

在他的代表作《工具论》中,就给出了形式逻辑的一些基本规律,如矛盾律、排中律,并且实际上已经提到了同一律和充足理由律。此外,亚里士多得还研究了概念、判断问题,以及概念的分类和概念之间的关系,判断问题的分类和它们之间的关系。其最著名的创造就是提出人人熟知的三段论。

◆英国的哲学家、自然科学家Bacon(培根)(1561-1626),他的主要贡献是系统地给出了归纳法,成为和Aristotle的演绎法相辅相成的思维法则。Bacon另一个功绩是强调了知识的作用。

Bacon的著名警句是"知识就是力量"。

◆德国数学家、哲学家Leibnitz(莱布尼茨)(1646-1716),他提出了关于数理逻辑的思想,把形式逻辑符号化,从而能对人的思维进行运算和推理。

他曾经做出了能进行四则运算的手摇计算机

◆英国数学家、逻辑学家Boole(布尔)(1815-1864),他初步实现了布莱尼茨的思维符号化和数学化的思想,提出了一种崭新的代数系统--布尔代数。

◆美籍奥地利数理逻辑学家Godel(哥德尔)(1906-1978),他证明了一阶谓词的完备性定理;任何包含初等数论的形式系统,如果它是无矛盾的,那么一定是不完备的。

此定理的意义在于,人的思维形式化和机械化的某种极限,在理论上证明了有些事是做不到的。

◆英国数学家Turing(图灵)(1912-1954),1936年提出了一种理想计算机的数学模型(

图灵机),1950年提出了图灵试验,发表了"计算机与智能"的论文。

当今世界上计算机科学最高荣誉奖励为"图灵奖"。

名词解释:图灵试验。当一个人与一个封闭房间里的人或者机器交谈时,如果他不能分辨自己问题的回答是计算机还是人给出时,则称该机器是具有智能的。以往该试验几乎是衡量机器人工智能的唯一标准,但是从九十年代开始,现代人工智能领域的科学家开始对此试验提出异议:反对封闭式的,机器完全自主的智能;提出与外界交流的,人机交互的智能。

◆美国数学家Mauchly,1946发明了电子数字计算机ENIAC

◆美国神经生理学家McCulloch,建立了第一个神经网络

数学模型。

从某种意义上可以说近代人工智能的发展,首先是从人工神经网络研究开始的。但是由于某种原因,神经网络的研究一度进入低潮。详细内容参见第六章《人工神经元网络》

◆美国数学家Shannon(香农),1948年发表了《通讯的数学理论》,标志着"信息论"的诞生。

◆美国数学家、计算机科学家McCarthy,人工智能的早期研究者。1956年,他和其他一些学者联合发起召开了世界上第一次人工智能学术大会,在他的提议下,会上正式决定使用人工智能这个词来概括这个研究方向。

参加大会的有Minsky,Rochester,Shannon,Moore,Samuel,Selfridge,Solomonff,Simon,Newell等数学家、心理学家、神经生理学家、计算机科学家。McCarthy也被尊为"人工智能之父"。50年代--70年代

◆50年代初开始有了符号处理,搜索法产生。

人工智能的基本方法是逻辑法和搜索法。最初的搜索应用于机器翻译、机器定理证明、跳棋程序等。

◆60年代Simon由试验得到结论:人类问题的求解是一个搜索的过程,效果与启发式函数有关。叙述了智能系统的特点:智能表示、智能推理、智能搜索。

◆Nilson发表了A*算法(搜索方法)

◆McCarthy建立了人工智能程序设计语言Lisp

◆1965年Robinson提出了归结原理。

归结原理是与传统的自然演绎法完全不同的消解法。是第一个也是目前唯一的一个具有完备性(半完备性)的推理方法。曾轰动整个科学界。但该方法本身也有计算爆炸等问题。

◆1968年Quillian提出了语义网络的知识表示方法

◆1969年Minsky出了一本书"感知机",给当时的神经网络研究结果判了死刑

由于该书从理论上证明了当时主要的神经网络模型---感知器的分类能力是很有限的。因此,人工神经网络的研究由此进入低潮时期,而人工智能、专家系统的研究进入高潮。

70年代以后

◆70年代,人工智能开始从理论走向实践,解决一些实际问题。同时很快就发现问题:归结法费时、下棋赢不了全国冠军、机器翻译一团糟。此时,以Feigenbaum为首的一批年轻科学家改变了战略思想,1977年提出了知识工程的概念,开展了以知识为基础的专家咨询系统研究与应用。

著名的专家系统有

DENDRAL化学分析专家系统(斯坦福大学1968);

MACSYMA符号数学专家系统(麻省理工1971);

MYCIN诊断和治疗细菌感染性血液病的专家咨询系统(斯

坦福大学1973);

CASNET(CausalASsciationalNetwork)诊断和治疗青光眼的专家咨询系统(拉特格尔斯(Rutgers)大学70年代中);

CADUCEUS(原名INTERNIST)医疗咨询系统(匹兹堡大学);

HEARSAYI和II语音理解系统(卡内基-梅隆大学);PROSPECTOR地质勘探专家系统(斯坦福大学1976);XCON计算机配置专家系统(卡内基-梅隆大学1978)。应该说,知识工程和专家系统是近十余年来人工智能研究中最有成就的分支之一。

◆80年代,人工智能发展达到阶段性的顶峰。87,89年世界大会有6-7千人参加。硬件公司有上千个。Lisp硬件、Lisp机形成产品。同时,在专家系统及其工具越来越商品化的过程中,国际软件市场上形成了一门旨在生产和加工知识的新产业--知识产业。

1986年Rumlhart领导的并行分布处理研究小组◆同年代,

提出了神经元网络的反向传播学习算法,解决了神经网络分类能力有限这一根本问题。从此,神经网络的研究进入新的高潮。

◆90年代,计算机发展趋势为小型化、并行化、网络化、智能化。人工智能技术逐渐与数据库、多媒体等主流技术相结合,并融合在主流技术之中,旨在使计算机更聪明、更有效、与人更接近。

日本政府于1992年结束了为期十年的,称为"知识信息处理体统"的第五代计算机系统研究开发计划。并开始了为期十年的实况计算(RealWorldComputing)计划。

随着计算机和网络技术的发展与普及,当今人工智能主攻方向体现于:

◆并行与分布式处理技术,包括大规模并行机和机群的体系结构、并行操作系统与并行数据结构,分布式Client/Server计算模型及其处理技术,多专机系统的合作与知识共享技术等;

◆知识的获取、表示、更新和推理新机制,包括新的知识获取方法,常识性知识的表示、更新与推理,大型知识库的组织与维护,新一代逻辑处理机制等;

◆多功能的感知技术,包括对语音文字、图形与图像等信号的获取、识别、压缩与转化,以及多媒体输出和VR技术等。

◆智能Agent。智能体的交互、通讯和多智能体体系结构。智能体是智能体程序和智能体结构的结合。

◆数据挖掘。其中包括数据挖掘、数据查询。该方面的研究主要是信息时代的需求,面对海量的信息,人类必须有一整套的信息检索、处理手段,才能够从中得到有效的知识,否则将被繁多无用的信息淹没。

人工智能从以往的追求自主的系统,改变为人机结合的系统。计算机的定量与人的定性信息处理相结合,取长补短。甚至

提出了没有知识表示、没有推理的智能(六脚爬虫)。从以前单一的mind到现在mindandbody,SituatedAI,SensingandActing的结合,并且引入了概率论、遗传算法等理论。传统的人工智能研究是的基于逻辑的,深思熟虑的智能。现代的人工智能是研究直觉、顿悟、形象思维的智能。与模式识别的研究有密不可分的联系。

我国人工智能研究状况:

从七十年代开始,在国家的支持下,做了一些专家系统的研究,其中医疗诊断系统最多,尤其是中医医疗诊断系统。相对于美国很多探矿、化学等专家系统来说,我国的医疗诊断专家系统也是相当成功的,但是由于医疗风险等问题,投入实际使用的难度比较大。

更多机器人、无人机/车、AI技术资料(查看左下角阅读原文)

学人工智能必知:人工智能的发展史