数列an=(n╱n+1)的n次方的求和

【升学】 数列an=(n╱n+1)的n次方的求和

--------------------------------------------

傻大方资讯为您精选的网友回复(供您参考):

[数学]①an=(-1)^n*(2n-1), 数列an前40项和=(-1+3)+(-5+7)+……+(-77+79) =2*20=40. ②1/[(n+1)(n+3)]=(1/2)[1/(n+1)-1+3)], ∴Sn=(1/2)[1/2-1/4+1/3-1/5+1/4-1/6+……+1/(n+1)-1/(n+3)] =(1/2)[1/2+1/3-1/(n+2)-1/(n+3)] =5/12-(2n+5)/[2(n+2)(n+3)]. ③(1)an=1+2+2^2+……+2^(n-1)=2^n-1. (2)Sn=2^(n+1)-2-n.

--------------------------------------------