报表|搭了数据中台怎么用?AI+BI 让数据产生价值( 三 )


数据智能的标志就是由机器代替人工决策。在上文的导航案例中,道路的规划没有人工参与,用户数据的汇总也是有机器自动完成,整个导航形成一个数据智能应用的闭环,这就是真正的数据智能。
当然,能完成数据智能闭环的业务场景还很少,大多数场景下我们还在摸索数据智能的方向,因此需要做很多的尝试。随着业务场景的构建,越来越多的智能化数据需求被提出,这些智能化需求涉及到模型训练、数据标注、特征工程、模型部署、性能监控等,需要使用机器学习、深度学习等算法支持。数据中台的主要目标还是服务数据,对于智能化和模型并不能很好地支持,因此 AI 中台应运而生。
“我们把智能服务的需求抽象出来,形成一个独立的 AI 中台层。AI 中台是一个用来构建智能服务的基础设施平台,对公司所需的模型提供了分布分层的构建能力和全生命周期管理的服务,鼓励各个业务领域基础性、场景性、通用性的 AI 能力沉淀到平台中,加强模型复用、组合创新、规模化,最终实现降本增效和快速响应业务方。”
数据中台和 AI 中台两者是相互依存,承前启后的关系。
数据中台和 AI 中台两者都对外提供服务,只是侧重点不同:数据中台提供各种数据服务(BI 报表应用、数据探索等),AI 中台提供各种智能服务(模型预测、智能推荐等); AI 中台依托数据中台提供的数据能力和工具集,加速 AI 相关服务的开发和复用,来应对前台智能业务需求。
有了数据中台清洗好的数据,搭建智能项目事半功倍;数据中台也需要使用 AI 中台的智能化能力使得数据使用更加平民化和智能化。例如增强型BI 分析:通用自然语言交互方式,降低 BI 使用门槛;通过 AI 分析给出参与建议,帮助普通用户在没有数据专家的情况下有效访问数据;增强型数据管理:利用机器学习来管理数据,包括数据质量、元数据管理;主数据管理等。

报表|搭了数据中台怎么用?AI+BI 让数据产生价值
文章插图
在“以用户为中心”的思想指导下,企业需要快速响应、挖掘、引领?户的需求,借助平台化的力量可以事半功倍。中台将前台业务中相对稳定的能力固化和沉淀下来,并共享给有需要的其他业务方使用,从而实现快速响应业务需求、降低成本和支持业务方进行规模化创新。
以数据中台为例:
业务领域组数据团队需要紧急制作一批报表,不希望排期,部分报表需要T+0 时效性。数据来源是异构数据库,对数据时效性要求很高,需要对数据处理后并展示报表。使用数据中台,业务方不需要关心数据的异构性,无论是实时数据还是批量数据,只需要懂 SQL,业务方都可以在数据中台上申请数据,自助地写 SQL 进行处理数据清洗、数据处理,最后,通过配置和写 SQL 生成自己需要报表,不用等排期,完全自助快速完成。
AI 中台为例:
AI 中台的智能聊天机器人平台,对接第一个业务方是从零开始,从研发平台、模型研发、数据对接、到使用上线第一期,花了 6 个月的时间,第二个业务方享受到平台的优势,直接导入数据,进行验证和对接后,4 个月实现上线第一期,之后的业务方更快,2 个月上线,最近的一个业务方达到 3 周就上线的速度,体现了平台的复用性带来的便捷和快速响应业务方需求的能力。
纵观这次人工智能的浪潮,可以说是算法、大数据等技术和硬件多方面的因素促成的。一方面算法层面有了进一步突破,更重要的是大数据相关技术的成熟,使得数据的获取变得容易,大数据计算变得可能,以前许多不可能完成的事情,现在可以通过大数据的算力来进行学习和训练。
再结合现在 GPU、AI 芯片以及传感器等硬件技术,使得需要大规模计算的深度学习训练可以完成,这些都直接导致了AI应用的快速落地和到处开花。
以互联网 AI 应用为例,互联网巨头是使用大数据标注并落地 AI 应用的最早受益者。AI 最早应用在搜索引擎(Google、百度)、广告系统(Ebay)、电子商务网站(阿里)等,它们都是大数据的产生方和使用方,然后是在拥有大数据流的社交平台(Facebook、腾讯),到现在使用大数据技术在垂直细分领域做个性化推荐平台(头条、快手)。一方面大家在使用这些互联网平台,另外一方面大家也在进行免费的大数据标注。
以商业 AI 应用为例,商业机构通过激活已有的大数据,并结合 AI 算法创造商业价值。医疗机构通过已有病历实现疾病诊断/鉴别、个性化治疗/行为矫正、临床决策支持系统、流行病爆发预测等, 金融机构通过已有交易数据,进行大数据风控、个性化营销、智能投顾、智能投研等。这些都是大数据与AI紧密结合的产物。