基带|从基带到射频:数据在手机和基站内的奇妙旅程( 二 )


举个例子,信道编码就像在货物边上填塞保护泡沫。如果路上遇到颠簸,发生碰撞,货物的受损概率会降低。
基带|从基带到射频:数据在手机和基站内的奇妙旅程
文章插图
去年联想投票事件里提到的Turbo码、Polar码,LDPC码,还有比较有名的卷积码,全部都属于信道编码。
除了编码之外,基带还要对信号进行加密。
接下来的工作,还是基带负责,那就是调制。
调制,简单来说,就是让“波”更好地表示0和1。
基带|从基带到射频:数据在手机和基站内的奇妙旅程
文章插图
最基本的调制方法,就是调频(FM)、调幅(AM)、调相(PM)。如下图所示,就是用不同的波形,代表0和1。
基带|从基带到射频:数据在手机和基站内的奇妙旅程
文章插图
现代数字通信技术非常发达,在上述基础上,研究出了多种调制方式。例如幅移键控(ASK)、频移键控(FSK)、相移键控(PSK),还有正交幅度调制,也就是大名鼎鼎的QAM(发音是“夸姆”)。
为了直观表达各种调制方式,我们会采用一种叫做星座图的工具。星座图中的点,可以指示调制信号幅度和相位的可能状态。
基带|从基带到射频:数据在手机和基站内的奇妙旅程
文章插图
星座图
基带|从基带到射频:数据在手机和基站内的奇妙旅程
文章插图
16QAM示意图
(1个符号代表4个bit)
调制之后的信号,单个符号能够承载的信息量大大提升。现在5G普遍采用的256QAM,可以用1个符号表示8bit的数据。
基带|从基带到射频:数据在手机和基站内的奇妙旅程
文章插图
256QAM
好了,基带的活儿总算是干完了。接下来该怎么办呢?
轮到射频登场了。
射频,英文名是Radio Frequency,也就是大家熟悉的RF。从英文字面上来说,Radio Frequency是无线电频率的意思。严格来说,射频是指频率范围在300KHz~300GHz的高频电磁波。
大家都知道,电流通过导体,会形成磁场。交变电流通过导体,会形成电磁场,产生电磁波。
基带|从基带到射频:数据在手机和基站内的奇妙旅程
文章插图
频率低于100kHz的电磁波会被地表吸收,不能形成有效的传输。频率高于100kHz的电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力。
基带|从基带到射频:数据在手机和基站内的奇妙旅程
文章插图
这种具有远距离传输能力的高频电磁波,我们才称为射频(信号)。
和基带一样,我们通常会把射频电路、射频芯片、射频模组、射频元器件等产生射频信号的一系列东东,笼统简称为射频。
所以,我们经常会听到有人说:“XX手机的基带很烂”,“XX公司做不出基带”,“XX设备的射频性能很好”,“XX的射频很贵”……之类的话。
基带送过来的信号频率很低。而射频要做的事情,就是继续对信号进行调制,从低频,调制到指定的高频频段。例如900MHz的GSM频段,1.9GHz的4G LTE频段,3.5GHz的5G频段。
基带|从基带到射频:数据在手机和基站内的奇妙旅程
文章插图
射频的作用,就像调度员
之所以RF射频要做这样的调制,一方面是如前面所说,基带信号不利于远距离传输。
另一方面,无线频谱资源紧张,低频频段普遍被别的用途占用。而高频频段资源相对来说比较丰富,更容易实现大带宽。
再有,你也必须调制到指定频段,不然干扰别人了,就是违法。
在工程实现上,低频也不适合。
根据天线理论,当天线的长度是无线电信号波长的1/4时,天线的发射和接收转换效率最高。电磁波的波长和频率成正比(光速=波长×频率),如果使用低频信号,手机和基站天线的尺寸就会比较大,增加工程实现的难度。尤其是手机侧,对大天线尺寸是不能容忍的,会占用宝贵的空间。
信号经过RF射频调制之后,功率较小,因此,还需要经过功率放大器的放大,使其获得足够的射频功率,然后才会送到天线。
信号到达天线之后,经过滤波器的滤波(消除干扰杂波),最后通过天线振子发射出去。
基带|从基带到射频:数据在手机和基站内的奇妙旅程
文章插图
电磁波的传播
基站天线收到无线信号之后,采取的是前面过程的逆过程——滤波,放大,解调,解码。处理之后的数据,会通过承载网送到核心网,完成后面的数据传递和处理。
以上,就是信号大致的变化过程。注意,是大致的过程,实际过程还是非常复杂的,还有一些中频之类的都没有详细介绍。
我把大致过程画个简单的示意图如下: