按关键词阅读:
AI研究对气候变化的负面影响究竟有多大,从谷歌力排众议开除Gebru一事可见一斑。谷歌此等科技大鳄宁可牺牲公司形象,闹得沸沸扬扬,也要阻止Gebru合著论文的发表,甚至不惜开除在AI圈内小有名气的Gebru。详情见《Gebru被辞退的背后真相:指出BERT的4大危害,威胁谷歌商业利益》。
Gebru等人在论文中引用了Emma Strubell等人的研究论文《Energy and Policy Considerations for Deep Learning in NLP》。这篇论文指出,用“神经架构搜索”方法训练一种语言模型会产生626,155磅二氧化碳,大约相当于五辆普通美国汽车的使用寿命。研究人员还估计,训练一个BERT模型大约会产生1,438磅二氧化碳,相当于在纽约与旧金山之间的一次往返航班所产生的碳排放量。
Gebru的论文初稿指出,建立和维持大型AI模型所需的资源只会使富裕的组织受益,其所造成的气候变化加剧对边缘社群的打击最大。因此,他们在论文中写道:“现在,研究人员应该优先考虑提高能源效率和规划成本,以减少对环境的负面影响和对资源使用的不平等现象。”
因此,政府可以通过考虑将气候影响纳入人工智能监管、战略、融资机制和采购项目,努力减少人工智能的负面影响。
这种能力必须在广泛的组织中建立,包括国际、国家和地方各级的政府实体,以及气候相关部门(例如能源、运输、重工业或农业)的私营和民间社会组织。报告建议各国政府可以通过以下方式支持相关机构能力的发展:
? 将负责任的人工智能原则嵌入到倡议和治理结构的设计中,包括促进民间社会、地方政府、全球南方地区和边缘化群体的参与。
? 通过收集人工智能排放影响数据,并建立标准测量和报告框架,促进对人工智能的气候认知影响评估。
? 以文化、技能和人才、标准、工具和最佳实践的形式建设实施、评估和治理的能力。
如何建立这种实施、评估和治理能力?Climate TRACE探索出了一种可行的模式。
Climate TRACE是一个组织联盟,成员包括Blue Sky Analytics、CarbonPlan、Earthrise Alliance、 马来西亚大学、Hudson Carbon、OceanMind、Hypervine、TransitionZero、WattTime等世界各地的组织。在各机构的配合下,Climate TRACE已建立起一种排放监测方法,该方法将来自300多颗卫星和11,000个传感器的数据与AI算法相结合,以识别和量化排放源。
最初,WattTime和Transition Zero专注于使用卫星图像测量燃煤电厂的排放量。最近,它们与其他十个专注于其他排放部门的组织合作,开发了世界上第一个主要基于直接、独立的观测数据的温室气体排放综合核算清单。该清单涉及到过去5年无法获得综合排放数据的100多个国家。因此,各国领导人可以通过反映准确的最新排放趋势为他们的决策提供信息。
Climate TRACE已将其方法扩展到广泛的排放源,包括监测以下相关排放数据:
? 石油和天然气的生产以及精炼。Climate TRAC表明,这些总产量可能是《联合国气候变化框架公约》最近估值的两倍左右。
? 航运和航空。Climate TRACE表明,这两个行业在2015年至2020年期间共排放了近110亿吨的二氧化碳。
? 森林火灾,自2015年以来,俄罗斯和美国的森林火灾增加了一倍多。
? 与水稻相关的排放量,在一些地区明显高于此前的预期。
在单个国家内,就这些倡议采取有意义的行动需要多个政府部门或分支机构之间的合作。例如,专注于人工智能或数字化的机构、专注于气候变化或气候相关行业的机构、标准机构、监管机构和地方政府,此外,民间社会、学术界和私营部门的参与。而多边或国际合作,例如,通过在现有国际组织内发展跨职能联盟或能力建设,促进知识共享,并加强整体努力。
文章插图
最后,这份报告在数据和数字基础设施、研究和创新资金、部署和系统集成、减少AI对气候的负面影响、负责任AI的实施和评估、评估AI对气候的总体影响、能力建设和国际合作等方面提出了详细的举措,如下表所示:
稿源:(雷锋网)
【傻大方】网址:/c/111cC1612021.html
标题:gebru|如何权衡人工智能与气候变化?两大组织联手交出了一份答卷( 二 )