按关键词阅读: 马化腾 张一鸣 农夫山泉 胡润百富榜 曾毓群 2021胡润百富榜 胡润研究院
文章插图
文丨脑极体
自2018年谷歌发布BERT以来,预训练大模型经过三年的发展,以强大的算法效果,席卷了NLP为代表的各大AI榜单与测试数据集。2020年OpenAI发布的NLP大模型GPT-3,实现了千亿级数据参数。GPT-3除了具备传统的NLP能力之外,还可以算术、编程、写小说、写论文摘要,一时之间成为科技圈中的爆点。到2021年,我们可以看到各大学术机构、科技企业都在打造自己的大模型,并且对其能力边界、技术路径进行了极大拓展。
身在科技圈中会有明显的感受,今年大模型的会议与讨论越来越多,预训练大模型本身的优势我们在很多新闻中都感受到了。打造大模型并不是一件轻松容易的事情,需要耗费大量的数据、算力资源等,大模型的意义是为了让算法模型集中化,但是市场中有条件的企业和机构都开始耗费大量资源自研大模型。大模型算法模型的集中化优势,经过这些机构对集中资源的分化,又有种烟囱式的割裂。
其实现实可能只需要一个发展到极致化的大模型就足够大家使用了,没有必要人手一个。而且预训练大模型的发展在这样的模式下也会受到一些影响,而在这个态势下也有一些趋势与变化值得讨论与关注。
大模型发展模式的卡点【 大模型的未来在哪?】BERT、GPT 等大规模预训练模型(PTM)近年来取得了巨大成功,成为AI领域的里程碑。因为预训练大模型的显著优势,现在AI社区的共识是采用它作为下游任务的开始,而不是从头开始训练数据、建立模型。
随着产学研各界的深入研究,大模型在AI各界的地位得到不断加强。一些机构和产业界对大模型的参与到角逐,使得其呈现出一种宣传炫技般的画面感受。这样的发展模式很可能会给行业带来一些不好的影响:
1.大模型成为一些机构和企业秀肌肉的军备竞赛,大家开始比拼各自参数集数量级。你百亿级,我就千亿级。数据集本身就有限,标榜自己的数据集越大,也意味着水分比较多,而在真实落地使用的情况方面,也并不不一定理想。算力资源和训练时间消耗过大,并且也只限于部分行业的部分问题,普适性差。
2.国内预训练模型的玩家们可用的中文数据集有限,就是我们知道的几种主流常用数据来源。在有限的数据集里,大家使用的数据未免重复,而因此研究出来的大模型能力就比较接近。走相同的路径做类似的事情,有点浪费资源与算力。
3.大模型是否优秀,不仅依赖数据的精度与网络结构,也是对其与行业结合软硬件协同能力的比拼。单纯只强调低头研发高参数集、强算力模型等的方向,轻视一些与行业的协同二次调试等问题,就会陷入闭门造车的局面,限制了落地的路,走不远。
4.一些预训练大模型经过极致化(数据、模型、算力)的发展后,也有可能面临小众、泛用性差的情形,比如一些高校研发的预训练大模型只能在小众的学术圈子里使用,无法工程化使用,最终沦为一次性的模型,浪费大量的资源。
虽然我们看到各种大模型在集中式爆发发展,但其实目前大模型行业还处于初始阶段,面临一些问题与卡点无可避免。行业内人士应该会更加敏感地体察到这些现象,谁也不会想要让这些荆棘以常态的模式横亘在发展前路上。大家花费精力激荡脑力,想要发展的共识是打造出行业内唯一的模型。那么,对于行业来说,究竟什么样的大模型才是最好的呢?
究竟什么是好的大模型?在这场battle里,大模型向着规模极致化的方向发展。那么如何衡量大模型的能力,是一个绕不开的话题。衡量大模型能力的关键要素是,参数的规模和与细分行业结合对接的软硬件协同能力。我们在各种新闻中经常可以看到,机构或者是企业用数据集或者是参数规模,以及跑分来彰显自己的模型水平。
参数的规模决定了预训练模型有多大。参数越大一般来说意味着大模型具备更多的能力,泛化性、通用性也更加强。成功的大模型背后,还需要大规模分布式训练、并行计算、软硬件协同优化等能力。
文章插图
脑极体曾在GPT-3最火的时候,参与过一次试验:用GPT-3写个文章出来。我们给第三方提供了一些写作的思路,想要看一下机器写出来的效果怎么样(其实是想看看自己离失业还有多久)。结果得到的反馈是GPT-3在理解能力方面很牛很强,但是让它去生产一篇稿件,对于它来说还是比较复杂而且困难的一件事情。
稿源:(钛媒体APP)
【傻大方】网址:http://www.shadafang.com/c/102O342232021.html
标题:大模型的未来在哪?