参与者|佐治亚理工学院发文:不要迷信可解释性,小心被误导( 三 )

在组织层面上,为设计者和终端用户引入教育(培训)计划。搭建一个生态系统是很重要的,因为EPs具有社会维度的复杂性,我们需要一种超越技术层面的策略。近期工作表明,对黑暗模式的扫盲可以促进自我反思和减轻危害。EPs扫盲计划可以制定如下:(a)帮助设计者意识到EPs可能出现的表现;(b)让终端用户提高识别“陷阱”的能力。
总的来说,这些策略有助于我们用积极地预防EPs,促进对陷阱的复原力。虽然不够详尽和规范,但它在解决潜在有害问题上迈出了重要的一步。

4

总结
从安全性和可靠性的角度来说,XAI系统对人工智能解释所产生的影响进行分类非常重要。这项研究通过“可解释性陷阱(EPs)”概念的讨论,揭露了人工智能解释可能带来的意料之外的负面影响。文中关于EPs的操作化和应对策略的解读和见解,有助于改善XAI系统的问责和安全机制。
基于这项研究发现,作者认为关于XAI还有一些开放性的问题值得进一步讨论:
1. 如何制定有效的 EPs 分类法,以更好地识别和减少负面影响?
2. 如何使用不恰当解释来说明“陷阱”在现实中的影响?
3. 如何评估训练过程,以减轻“陷阱”可能带来的影响
最后作者表示,从人机交互到人工智能社区,他们正在通过基础概念与应用进一步研究可解释性陷阱。相信通过了解XAI系统中陷阱的位置、方式和原因,可以显著提高人工智能系统的安全性。
参与者|佐治亚理工学院发文:不要迷信可解释性,小心被误导
参与者|佐治亚理工学院发文:不要迷信可解释性,小心被误导
文章插图
雷锋网