使用tensorflow和Keras的初级教程( 三 )
Dense函数的输入
- units — 输出尺寸
- activation — 激活函数 , 如果未指定 , 则不使用任何内容
- use_bias — 布尔值 , 如果使用偏置项
- kernel_initializer — 核权重的初始值设定项
- bias_initializer —偏置向量的初始值设定项 。
model = Sequential(layers=None, name=None)model.add(Dense(10, input_shape = (29,), activation = 'tanh'))model.add(Dense(5, activation = 'tanh'))model.add(Dense(1, activation = 'sigmoid'))sgd = optimizers.Adam(lr = 0.001)model.compile(optimizer = sgd, loss = 'binary_crossentropy', metrics=['accuracy'])
体系结构摘要model.summary()Model: "sequential"_________________________________________________________________Layer (type)Output ShapeParam #=================================================================dense (Dense)(None, 10)300_________________________________________________________________dense_1 (Dense)(None, 5)55_________________________________________________________________dense_2 (Dense)(None, 1)6=================================================================Total params: 361Trainable params: 361Non-trainable params: 0_________________________________________________________________
让我们试着理解上面的输出(输出说明使用两个隐藏层提供):- 我们创建了一个具有一个输入、两个隐藏和一个输出层的神经网络
- 输入层有29个变量和10个神经元 。 所以权重矩阵的形状是10 x 29 , 而偏置矩阵的形状是10 x 1
- 第1层参数总数=10 x 29+10 x 1=300
- 第一层有10个输出值 , 使用tanh作为激活函数 。 第二层有5个神经元和10个输入 , 因此权重矩阵为5×10 , 偏置矩阵为5×1
- 第2层总参数=5 x 10+5 x 1=55
- 最后 , 输出层有一个神经元 , 但是它有5个不同于隐藏层2的输入 , 并且有一个偏置项 , 因此神经元的数量=5+1=6
model.fit(X_train, y_train.values, batch_size = 2000, epochs = 20, verbose = 1)Epoch 1/20114/114 [==============================] - 0s 2ms/step - loss: 0.3434 - accuracy: 0.9847Epoch 2/20114/114 [==============================] - 0s 2ms/step - loss: 0.1029 - accuracy: 0.9981Epoch 3/20114/114 [==============================] - 0s 2ms/step - loss: 0.0518 - accuracy: 0.9983Epoch 4/20114/114 [==============================] - 0s 2ms/step - loss: 0.0341 - accuracy: 0.9986Epoch 5/20114/114 [==============================] - 0s 2ms/step - loss: 0.0255 - accuracy: 0.9987Epoch 6/20114/114 [==============================] - 0s 1ms/step - loss: 0.0206 - accuracy: 0.9988Epoch 7/20114/114 [==============================] - 0s 1ms/step - loss: 0.0174 - accuracy: 0.9988Epoch 8/20114/114 [==============================] - 0s 1ms/step - loss: 0.0152 - accuracy: 0.9988Epoch 9/20114/114 [==============================] - 0s 1ms/step - loss: 0.0137 - accuracy: 0.9989Epoch 10/20114/114 [==============================] - 0s 1ms/step - loss: 0.0125 - accuracy: 0.9989Epoch 11/20114/114 [==============================] - 0s 2ms/step - loss: 0.0117 - accuracy: 0.9989Epoch 12/20114/114 [==============================] - 0s 2ms/step - loss: 0.0110 - accuracy: 0.9989Epoch 13/20114/114 [==============================] - 0s 1ms/step - loss: 0.0104 - accuracy: 0.9989Epoch 14/20114/114 [==============================] - 0s 1ms/step - loss: 0.0099 - accuracy: 0.9989Epoch 15/20114/114 [==============================] - 0s 1ms/step - loss: 0.0095 - accuracy: 0.9989Epoch 16/20114/114 [==============================] - 0s 1ms/step - loss: 0.0092 - accuracy: 0.9989Epoch 17/20114/114 [==============================] - 0s 1ms/step - loss: 0.0089 - accuracy: 0.9989Epoch 18/20114/114 [==============================] - 0s 1ms/step - loss: 0.0087 - accuracy: 0.9989Epoch 19/20114/114 [==============================] - 0s 1ms/step - loss: 0.0084 - accuracy: 0.9989Epoch 20/20114/114 [==============================] - 0s 1ms/step - loss: 0.0082 - accuracy: 0.9989
- 或使用天玑1000+芯片?荣耀V40已全渠道开启预约
- 苹果将推出使用mini LED屏的iPad Pro
- 手机能用多久?如果出现这3种征兆,说明“默认使用时间”已到
- 苹果有望在2021年初发布首款使用mini LED显示屏的 iPad Pro
- 笔记本保养有妙招!学会这几招笔记本再战三年
- 数据可视化三节课之二:可视化的使用
- 索尼sw77与sw55的使用差别感受
- 爆料称一加9系列与潜望式镜头无缘 继续使用普通长焦
- 太空舱|四川绵阳:中国首款智慧移宿空间亮相 使用寿命可达50年
- 电影制作专业学生使用AI创作《汉密尔顿》歌词,意外提到了希拉里