数学文化之欧拉的故事

小编来今天给同学们带来的趣味数学故事是:数学文化之欧拉的故事 。
每天10分钟头脑大风暴 , 开发智力 , 培养探索能力 , 让你成为学习小天才 。
故事适合年级:小学【数学文化之欧拉的故事】趣味小故事:数学一直都是小学生学习的重点 , 因此 , 求学网数学网小学频道精心为大家提供了欧拉的故事 , 希望对大家有所帮助 。
欧拉的故事:瑞士数学家列昂纳德欧拉(1707-1783)在其一生中 , 为人类作出了卓越的贡献 , 留下了886篇论文和著作 , 几乎在数学的每个部门都留下了他的足迹 。
聪明来自劳动 , 天才出于勤奋 , 智慧的金花不会为懒汉开放 。1735年 , 当欧拉还只有28岁时 , 就瞎了一只眼睛 。1766年 , 另外一只眼睛也瞎了 , 但是他仍然以高度的毅力坚韧不拔地从事数学研究 。他的研究工作是大量和杰出的 。晚年 , 他口述其发现 , 让别人把它笔录下来 , 为人类文明史谱写了许多光辉的篇章 。
在欧拉的886种著作中 , 属于他生前发表的有530本书和论文 , 其中有不少是教科书 。
由于文笔浅显 , 通俗易懂 , 引人入胜 , 甚至在今天读起来也毫无困难 。尤其值得一提的是他所编写的平面三角课本 , 采用了近代记号sin、cos等 , 实际上他的讲法已经成为最后的形式 , 三角学到他手里已完全成熟了 。
欧拉在数学上的贡献多得不胜枚举 。经常为人称道和引证的有几个例子 。一个是所谓哥尼斯堡七桥问题 , 由于欧拉解决了这个历史上流传甚久的趣题 , 因而被誉为拓扑学的鼻祖 。另一个例子是多面体的欧拉公式v-e+f=2(v是多面体的顶点数 , e是边数 , f是面数) 。第三个例子 , 差不多任何关于复数的课本中都不可避免地要提到它 , 即:eix=cosx+isinx.任何科学都有其相关性 。尤其在中学时代 , 学好语文 , 对于理解和掌握数学知识是非常重要的 。作为教育家的欧拉也高度重视这一点 。怎样列出代数方程来解文字题 , 虽是十分古老的题材 , 但是它在数学发展史上曾起过重大作用 , 促进了代数学的发展 。和牛顿的观点一样 , 欧拉并不认为解决这类初等数学问题是有损尊严的事 , 在他的名著《代数基础》中就着意搜集了许多题目 。
下面就是他的一个题目:一位父亲临死时叫他的几个孩子按照下列方式瓜分他的财产:第一个儿子分得一百克朗与下剩财产的十分之一;第二个儿子分到二百克朗与下剩财产的十分之一;第三个儿子分到三百克朗与下剩财产的十分之一;第四个儿子分到四百克朗与下剩财产的十分之一依此类推 。问这位父亲共有多少财产?他一共有几个孩子?每个孩子分到多少?最后发觉这种分法简直太好了 , 因为所有的孩子分得的数字恰恰相等 。中国有句老话说:一碗水端平 , 真是平得不能再平了 。
这道题也可能有多种解法 , 下面只是给出其中的一个 。设每个孩子分得的数字是x , 总的财产是y , 则根据题意 , 第一个儿子分得的份额是:第二个儿子的份额是:第三个儿子的份额是;依此类推可以看出 , 老大与老二(老二与老三 , 老三与老四等等都一样)的差额是根据题意 , 这个差数应当是0 , 于是得出一元一次方程:解的结果是
x=900 , 于是y=8100.所以这位父亲有九个孩子 , 他共有财产8100克朗 , 每人分到900克朗 。
下面我们不妨再列出两个欧拉提出的趣题 , 有兴趣的读者可以思考一番:
1.骡子与驴子身上各背着几百斤的重物 , 它们互相埋怨着 。驴子对骡子说:只要把你身上所背的重量给我一百斤 , 我所背的就是你的两倍 。骡子回答道:不错!可是如果你把你背的一百斤给了我的话 , 我所背的就是你的三倍 。问它们各背了多少斤的重物?
2.三个人在一起做某种游戏 。第一局结束时 , 甲输给了其他两个人的东西分别等于他们手中所有的东西 。第二局收场了 , 乙输给甲、西两人的东西也正好等于他们那时手中所有的东西;第三场结束时 , 这回却轮到丙是输家 , 他输给了甲、乙两人的东西也恰恰是他们两人那时手中所有的东西 。他们结束了这种游戏 , 最后竟然发现三人各自手头有的东西正好一样 , 都是24个 。问比赛前这三个人手中各有多少个东西?