[]200倍的提速!华人博士生提出大场景三维点云语义分割新框架( 六 )

  • 三维点云分割网络的scalability也是实际应用中一个比较重要的点 。 i.e., 理想情况下train好的网络应该可以用于inference任意点数的输入点云 , 因为每个时刻采集到的点云的点数不一定是相同的 。 这也是RandLA-Net没有使用全局特征的原因 , i.e. 确保学到的参数是agnostic to number of points.
  • 顺便打一波广告 , 对于刚刚进入三维点云处理领域的同学 , 有一份最新的综述论文(Deep Learning for 3D Point Clouds: A Survey)可供参考 , 内含大量主流的点云目标分类 , 三维目标检测 , 三位场景分割算法的最新研究进展及总结 。
  • 牛津大学出品 , 作者团队介绍
    论文合著者包括牛津大学博士生胡庆拥 , 杨波 , 谢林海 , 王智华;博士后Stefano Rosa;国防科技大学副教授郭玉兰;以及牛津大学教授Niki Trigoni和Andrew Markham 。
    []200倍的提速!华人博士生提出大场景三维点云语义分割新框架
    本文插图
    胡庆拥
    []200倍的提速!华人博士生提出大场景三维点云语义分割新框架
    本文插图
    杨波
    其中论文一作胡庆拥研究方向是3D视觉和机器学习 , 专注于大规模3D点云分割和理解 , 动态点云处理和跟踪 。 论文二作(通讯作者)杨波专注于让智能机器从2D图片或3D点云中理解和重构完整3D场景 。 更多信息见个人主页:
    https://qingyonghu.github.io
    https://yang7879.github.io
    Reference
    [1] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep learning on point sets for 3D classification and segmentation. CVPR, 2017.
    [2] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++: Deep hierarchical feature learning on point sets in a metric space. NeurIPS, 2017
    [3] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. PointCNN: Convolution on X-transformed points. NeurIPS, 2018.
    [4] Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv: Deep convolutional networks on 3D point clouds. CVPR, 2018.
    [5] Fabian Groh, Patrick Wieschollek, and Hendrik P. A. Lensch.Flex-convolution (million-scale point-cloud learning beyond grid-worlds). ACCV, 2018
    [6] Oren Dovrat, Itai Lang, and Shai Avidan. Learning to sample. CVPR, 2019.
    [7] Itai Lang, Asaf Manor, and Shai Avidan. SampleNet: Differentiable Point Cloud Sampling. arXiv preprint arXiv:1912.03663 (2019).
    [8] Abubakar Abid, Muhammad Fatih Balin, and James Zou. Concrete autoencoders for differentiable feature selection and reconstruction. ICML, 2019
    [9] Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li, Jinxian Liu, Mengdie Zhou, and Qi Tian. Modeling point clouds with self-attention and Gumbel subset sampling. CVPR, 2019.
    [10] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual attention. ICML, 2015
    [11] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, Franc ?ois Goulette, and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. ICCV, 2019.