医疗中生命科学仪器有哪些??( 三 )


子三维结构的新方法而获得了2002 年诺贝尔化学
奖 。由于核磁共振提供分子空间立体结构的信息,目
前已经发展成为分析分子结构和研究化学动力学的
重要手段,在有机化学、生物化学、药物化学等领域里
得到了广泛的应用,这反映出了核磁共振技术的迅猛
发展及其对世界前沿研究工作的巨大贡献 。在质谱
分析发展史中,先后有3 位科学家获得了诺贝尔化学
奖 。他们是:英国科学家Aston 设计了世界上第一台
质谱仪,并使用该仪器发现了212 种同位素,将人类
研究微观粒子的手段大大向前推进了一步,因而获得
了1922 年诺贝尔化学奖;日本科学家田中耕一和瑞
士科学家Kurt Wuthrich 共同开发出生物大分子的
质谱分析技术和发展了基质辅助激光解析电离法,为
发展生物大分子的鉴定与结构分析方法所做出了重
大贡献,因而获得了2002 年诺贝尔化学奖瑞典皇家
科学院称赞他们的研究工作“提升了人类对生命进程
的认识” 。随着科学技术的进步,仪器分析方法的发展日新
月异,从航天工程使用的特种材料到生命科学的过程
研究,先进的分析仪器和有效的分析方法都成为了不
可或缺的手段 。对于当今的大学生来说,由于计算机
和互联网的迅速发展,使得他们获得最新科技信息的
途径被大大地拓宽 。因此,将最新的分析仪器和分析
方法介绍给学生,对于他们理解最前沿的科技动向具
有很有利的帮助作用,从而激发了他们对所学专业的
热爱以及为科学献身的崇高理想 。比如,傅立叶变换
红外光谱(FTIR) 可提供有关分子结构的多种信息,
辅以二阶导数、去卷积、曲线拟合等解析方法可以研
究蛋白质二级结构的变化规律 。近几年,应用FTIR
从分子水平的角度研究癌症正是生物医学领域的热
门课题[4 ]。癌组织和正常组织的谱图表明癌组织样
品与正常样品的红外光谱存在明显差异,通过谱图解
析可直接或间接地阐明引起谱图变化的主要原因,以
及细胞癌变的可能机理及病程进展各期 。通过在教
学过程中穿插相关的图片、实验数据等,生动地将正
常组织与肿瘤组织的红外谱图在谱型、强度、频率等
谱学参数上存在明显的差异展示给学生,从而使学生
了解红外分析方法的重要意义 。
在对生物大分子的分析中,生物质谱与其他分析
方法相比具有准确性和灵敏度高、快速、易于大规模
和高通量操作等优点,因此在基因组学和蛋白质组学
研究中扮演着越来越重要的角色[5 ]。例如,在蛋白
分析技术中生物质谱以其不可比拟的优越性能,已经
成为蛋白质组学研究中必不可少的技术平台[6 ] ,在
蛋白质鉴定、序列分析、定量、翻译后加工(修饰) 及蛋
白质相互作用等方面已得到了较广泛的应用,其中用
于蛋白序列分析的生物质谱鉴定方法有基质辅助激
光解吸- 飞行时间- 肽质量指纹谱(MALDI - TOF
- PMF) 、串联质谱的肽序列标签以及肽段的从头测
序 。
随着人类探知未知世界的手段的不断进步,即使
有先进分析仪器的不断涌现,仅借助于某一种单一的
仪器分析方法往往也难以达到分析检测的目的,于是
出现了分析仪器联用技术 。从这个课程的学习,我体会到科学
家们既积极探索、勇于创新的科学精神,所以我们要主动投
入到学习和科研中去 。