从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来 。解析几何的产生并不是偶然的 。在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定 。
【解析几何的定义是什么 解析几何的含义】这些都对解析几何的创建产生了很大的影响 。在数学史上,一般认为和笛卡尔同时代的法国业余数学家费尔马也是解析几何的创建者之一,应该分享这门学科创建的荣誉 。费尔马是一个业余从事数学研究的学者,对数论、解析几何、概率论三个方面都有重要贡献 。他性情谦和,好静成癖,对自己所写的“书”无意发表 。
但从他的通信中知道,他早在笛卡尔发表《几何学》以前,就已写了关于解析几何的小文,就已经有了解析几何的思想 。只是直到1679年,费尔马死后,他的思想和著述才从给友人的通信中公开发表 。笛卡尔的《几何学》,作为一本解析几何的书来看,是不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了贡献 。解析几何的基本内容在解析几何中,首先是建立坐标系 。
如上图,取定两条相互垂直的、具有一定方向和度量单位的直线,叫做平面上的一个直角坐标系oxy 。利用坐标系可以把平面内的点和一对实数(x,y)建立起一一对应的关系 。除了直角坐标系外,还有斜坐标系、极坐标系、空间直角坐标系等等 。在空间坐标系中还有球坐标和柱面坐标 。
坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了 。用这种方法研究几何学,通常就叫做解析法 。这种解析法不但对于解析几何是重要的,就是对于几何学的各个分支的研究也是十分重要的 。
解析几何的创立,引入了一系列新的数学概念,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期 。解析几何在数学发展中起了推动作用 。恩格斯对此曾经作过评价“数学中的转折点是笛卡尔的变数,有了变数,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了,……”解析几何的应用解析几何又分作平面解析几何和空间解析几何 。
在平面解析几何中,除了研究直线的有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质 。在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面 。椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用 。比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的 。
总的来说,解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质 。运用坐标法解决问题的步骤是:首先在平面上建立坐标系,把已知点的轨迹的几何条件“翻译”成代数方程;然后运用代数工具对方程进行研究;最后把代数方程的性质用几何语言叙述,从而得到原先几何问题的答案 。坐标法的思想促使人们运用各种代数的方法解决几何问题 。
先前被看作几何学中的难题,一旦运用代数方法后就变得平淡无奇了 。坐标法对近代数学的机械化证明也提供了有力的工具 。圆锥曲线希腊著名学者梅内克缪斯(公元前4世纪)企图解决当时的著名难题“倍立方问题”(即用直尺和圆规把立方体体积扩大一倍) 。他把直角三角形ABC的直角A的平分线AO作为轴 。
旋转三角形ABC一周,得到曲面ABECE’,如图
1.?用垂直于AC的平面去截此曲面,可得到曲线EDE’,梅内克缪斯称之为“直角圆锥曲线” 。他想以此在理论上解决“倍立方问题 。
”未获成功 。而后,便撤 。
什么是解析几何,和普通几何有什么区别?
文章插图
解析两个字就是指引入数字的计算,通过数学式来分析解出想要的东西 。最常用的就是直角坐标系,比如x2+y2=1就是一个圆的解析方程式 。
普通几何就是初中开始学的简单的东西那一类,什么圆心角是圆周角二倍啦,总之就是虽然有数量关系,但没有建立坐标系,也没有图形的方程式,也就谈不上解析 。
- 吴强的个人简介
- 亚当.斯密的个人介绍
- 简述计算机的特点
- 键盘查找快捷键是什么
- ps矩形工具怎么调整它的形状
- minitab软件是干嘛的
- 抖音充值的钱可以退回来吗
- 兔子粪便怎么清理
- 狗狗脚掌怎么护理 选择合适的遛狗地点很重要
- 复仇者联盟3哪些英雄角色牺牲了 最后存活下来的人物