比较木头、瓷、铁、塑料等常见材料的导热性能?( 十 )


如果屏蔽罩或垫片结构是金属的,那么在喷涂抛光材料之前可加一个衬垫把垫片表面包住,只需用导电膜和卷带即可 。若在接合垫片的两边都使用卷带,则可用机械固件对EMI衬垫进行紧固,例如带有塑料铆钉或压敏黏结剂(PSA)的“C型”衬垫 。衬垫黏着在垫片的一边,以完成对EMI的屏蔽 。
衬垫及附件
目前可用的屏蔽和衬垫产品非常多,包括铍-铜接头、金属网线(带弹性内芯或不带)、嵌入橡胶中的金属网和定向线、导电橡胶以及具有金属镀层的聚氨酯泡沫衬垫等 。大多数屏蔽材料制造商都可提供各种衬垫能达到的SE估计值,但要记住SE是个相对数值,还取决于孔隙、衬垫尺寸、衬垫压缩比以及材料成分等 。衬垫有多种形状,可用于各种特定应用,包括有磨损、滑动以及带铰链的场合 。目前许多衬垫带有黏胶或在衬垫上面就有固定装置,如挤压插入、管脚插入或倒钩装置等 。
各类衬垫中,涂层泡沫衬垫是最新也是市面上用途最广的产品之一 。这类衬垫可做成多种形状,厚度大于0.5mm,也可减少厚度以满足UL燃烧及环境密封标准 。还有另一种新型衬垫即环境/EMI混合衬垫,有了它就可以无需再使用单独的密封材料,从而降低屏蔽罩成本和复杂程度 。这些衬垫的外部覆层对紫外线稳定,可防潮、防风、防清洗溶剂,内部涂层则进行金属化处理并具有较高导电性 。最近的另外一项革新是在EMI衬垫上装了一个塑料夹,同传统压制型金属衬垫相比,它的重量较轻,装配时间短,而且成本更低,因此更具市场吸引力 。
结论
设备一般都需要进行屏蔽,这是因为结构本身存在一些槽和缝隙 。所需屏蔽可藉由一些基本原则确定,但是理论与现实之间还是有差别 。例如在计算某个频率下衬垫的大小和间距时还必须考虑信号的强度,如同在一个设备中使用了多个处理器时的情形 。表面处理及垫片设计是保持长期屏蔽以实现EMC性能的关键因素 。
电磁波吸收材料系利用软磁铁氧体在高频下损耗增大的现象来达到吸收电磁波的目的 。在工程上的实际应用中,除要求材料在很宽(从RF到微波)的频率范围内有高的电磁波能量吸收率外,尚要求材料机械强度好、涂层薄、重量轻、耐温耐湿、抗辐射和抗腐蚀 。目前实用的材料有Ni—Zn铁氧体和六角晶系铁氧体等 。在工程应用上,为提高对电磁波的吸收率和扩展吸收频率范围,多制成掺有金属短纤维和有机高分子材料的复合物 。此外,为克服早期吸收材料寄生于雷达目标表面从而增加了重量之不足,近来国外还研制出一种用吸收材料与工程塑料复合而成的新型结构型载荷体吸收材料,可用于飞机发动机的整流罩,已在美国F—111战斗机上运行数万小时 。北美罗克未尔公司也为喷气发动机进气口研制成一种复杂的蜂窝式结构型吸收体,有很高的吸收率及机械强度 。吸收材料的形状尖劈形 。微波暗室采用的吸收体常做成尖劈形,它是在泡沫塑料中掺入碳精粉然后再在外面包上一层高强度型泡沫塑料做保护层,这样吸收体即使受到外界碰撞也不致损坏 。但频率降低(波长增长),吸收体长度也大为增加,普通尖劈形吸收体有近似关系式L/λ≈1,所以在100MHz时,尖劈长度达3cm;在60MHz时,尖劈长度达5cm,这不但工艺上难以实现,而且微波暗室有效可用空间也大为减少 。单层平板形 。国外最早研制成的吸收体就是单层平板形,后来制成的吸收体都是直接贴在金属屏蔽层上,其厚度薄、重量轻,但工作频率范围较窄 。双层或多层平板形 。该种吸收体可在很宽的工作频率范围内工作,且可做成任意形状 。如日本NEC公司将铁氧体和金属短纤维均匀分散在合适的有机高分子树脂中做成的复合材料,工作频带可宽达40—50%左右 。其缺点是厚度大、工艺复杂、成本较高 。涂层形 。在飞行器表面只能用涂层形吸收材料,为展宽频率带,一般都采用复合材料的涂层 。如锂镉铁氧体涂层厚2.5—5m m时,在厘米波段可衰减8.5dB;尖晶石铁氧体涂层厚2.5m m时,在9GHz可衰减24dB;铁氧体加氯丁橡胶涂层厚1.7—2.5m m时,在5—10GHz衰减达30dB左右 。结构形 。将吸收材料掺入工程塑料使其既具有吸收特性,又具有载荷能力,这是吸收材料发展的一个方向 。近年来,为进一步提高吸收材料的性能,国外还发展了由几种形状组合的复杂形吸收体 。如日本采用该类吸收体做成的微波暗室,其性能为:136MHz,25dB;300MHz,30dB;500MHz,40dB;1—40GHz,45dB 。吸收材料的工程应用在日益重要的隐身和电磁兼容(EMC)技术中,电磁波吸收材料的作用和地位十分突出,已成为现代军事中电子对抗的法宝和“秘密武器” 。其工程应用主要有:隐身技术 。在飞机、导弹、坦克、舰艇、仓库等各种装备和军事设施上面涂敷吸收材料,就可以吸收掉侦察电波、衰减反射信号,从而突破敌方雷达的防区,这是反雷达侦察的一种有力手段,减少武器系统遭受红外制导导弹和激光武器袭击的一种方法 。此外,电磁波吸收材料还可用来隐蔽着落灯等机场导航设备及其它地面设备、舰船桅杆、甲板、潜艇的潜望镜支架和通气管道等设备 。改善整机性能 。飞机机身对电磁波反射产生的假信号,可能导致高灵敏机载雷达假截获或假跟踪;一驾飞机或一艘舰船上的几部雷达同时工作时,雷达收发天线间的串扰有时十分严重,机上或舰上自带的干扰机也会干扰自带的雷达或通讯设备…… 。为减少诸如此类的干扰,国外常应用吸收材料优良的磁屏蔽来提高雷达或通讯设备的性能 。如在雷达或通讯设备机身、天线和周围一切干扰物上涂敷吸收材料,则可使它们更灵敏、更准确地发现敌方目标;在雷达抛物线天线开口的四周壁上涂敷吸收材料,可减少副瓣对主瓣的干扰和增大发射天线的作用距离,对接收天线则起到降低假目标反射的干扰作用;在卫星通信系统中应用吸收材料,将避免通信线路间的干扰,改善星载通讯机和地面站的灵敏度,从而提高通讯质量 。安全防护 。由于高功率雷达、通讯机、微波加热等设备的应用,防止电磁辐射或泄漏、保护操作人员的身体健康是一个全新而复杂的课题,吸收材料就可达到这一目的 。另外,目前的家用电器普遍存在电磁辐射问题,通过合理使用吸收材料及其元器件也可以有效地加以抑制 。微波暗室 。由吸收体装饰的壁面构成的空间称为微波暗室 。在暗室内可形成等效无反射的自由空间(无噪音区),从四周反射回来的电磁波要比直射电磁能量小得多,并可忽略不计 。微波暗室主要用于雷达或通讯天线、导弹、飞机、飞船、卫星等特性阻抗和耦合度的测量、宇航员用背肩式天线方向图的测量以及宇宙飞船的安装、测试和调整等,这既可消除外界杂波干扰和提高测量精度与效率(室内可全天候工作),还可保守秘密 。