按关键词阅读:
③若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()(
2、函数零点的判定
(1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根 。
(2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定方法
①代数法:函数)(xfy的零点Û0)(xf的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点 。
(3)零点个数确定
0)(xfy有2个零点Û0)(xf有两个不等实根;0)(xfy有1个零点Û0)(xf有两个相等实根;0)(xfy无零点Û0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定.
3、二分法
(1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;
(2)用二分法求方程的近似解的步骤:
①确定区间[,]ab,验证()()0fafb,给定精确度e;
②求区间(,)ab的中点c;③计算()fc;
(ⅰ)若()0fc,则c就是函数的零点;
(ⅱ)若()()0fafc,则令bc(此时零点0(,)xac);(ⅲ)若()()0fcfb,则令ac(此时零点0(,)xcb);
④判断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复②至④步.
声明:本文是由网友投稿,文中所阐述的观点不代表本网的立场。
来源:(未知)
【傻大方】网址:/a/2020/1125/00122640.html
标题:高一,数学,必修一,数学知识点|高一数学必修一知识点大全三篇( 三 )