按关键词阅读:
更快速、更高效是天气预报不懈的追求。但随着观测卫星、雷达和传感器网络持续不断地产生大量数据,如何处理海量的、多种多样的气象资料成为天气预报的一个挑战。而人工智能出色的大数据处理能力成为助力天气进一步精准预报的重要工具。
近日,我国南方多地持续多日的暴雨天气导致各地水位上涨,险情频发,部分地区不同程度受灾。目前救援工作正在紧张有序进行中,各式各样的“智能+”手段也正广泛运用到天气预测、抗洪抢险中,为高效调度决策提供科学依据。
那么,人工智能在极端天气预报、灾害预警及救援方面有哪些具体应用呢?就相关问题,科技日报采访人员近日采访了国家气象中心高级工程师朱文剑。
应用大幅提升 深度神经网络使预报准确率提高40%
2010年以来,随着新一代信息技术引发的信息环境与数据基础变革,海量图像、语音、文本等多模态数据不断涌现,计算能力的大幅提升,使得人工智能迎来爆发期。那么,目前在天气预报中,人工智能究竟发挥了哪些作用?
“最近两三年,国外人工智能在天气预报领域的应用大幅增长,并且呈现出由传统的机器学习向深度学习发展的趋势。”朱文剑表示。
目前,人工智能在天气预报领域的应用包括观测数据质量控制、数值模式资料同化、数值模式参数化、模式后处理、天气系统识别、灾害性天气(台风、强对流、雾霾等)监测和临近预报、预报公文自动制作等方面。
朱文剑介绍说,相比传统机器学习方法,深度学习在海量数据处理、图像识别与处理、非线性时空预测方面具有较明显优势。目前欧洲中期天气预报中心已经将深度学习用于卫星观测资料的同化分析。而在气象卫星资料应用方面,人工智能同样具有巨大前景,如用于卫星观测图像修复、基于卫星观测的天气系统识别、时空降尺度、数据同化等。
“国内气象行业对人工智能技术的关注度也正在快速提高。”朱文剑表示,中央气象台在定量降水融合预报、强对流天气分类潜势预报、台风智能检索、预报公文自动制作等方面采用了人工智能技术,取得鼓舞人心的效果。例如,中央气象台和清华大学联合开发出的一种基于深度神经网络的雷达回波外推方法,该方法比之前运用传统方法进行回波预报的准确率提高约40%。
凭借超强算力 灾害性临近预报预警结果超越人类
“以前巡堤,要靠人到现场看,再通过口述、笔记记录反馈巡查情况,汛情研判效率较低。”近日,江西九江共青城市农业农村水利局标准化项目部经理王嘉龙说,如今系统自动记录管辖段水情变化,实时显示堤防沿线视频监控画面,一旦发现异常,管理员即将画面配以文字描述及时上传,研判效率大幅提高。
“更高更快更强”是天气预报不懈的追求,更高分辨率、更快给出结果、更准确的预测等追求考验着现代大气科学。“人工智能凭借其超强的计算能力和强大的算法,在某些方面的能力已经远远超过了人类。”朱文剑指出。
比如,美国有一个关于雷暴生命史的实时预测模型做出的预报结果已明显优于人的主观经验,调查表明在该项业务上,预报员在面临模棱两可的情况下,更愿意相信人工智能的预报结果。
朱文剑介绍说,国外已实现基于深度神经网络和气象卫星观测资料的数据同化算法研发,在一定的准确率容忍范围内,与传统方法相比,人工智能方法的计算效率可大幅提高。近年来,欧洲中期天气预报中心较为全面地评估了人工智能技术在天气预报数值模式中各个技术环节的应用潜力,对人工智能的应用给出乐观的预期,并已在部分环节如物理过程参数化中开展技术试验。
稿源:(经济日报)
【】网址:http://www.shadafang.com/c/sdfnews0H9123D02020.html
标题:天气|预报天气,人工智能比人类更擅长?