研究成果|京东AI研究成果再向前一步 领先Waymo、Facebook
近日,第34届神经信息处理系统大会(Conference on Neural Information Processing Systems,简称NeurIPS,NIPS)在线上召开。作为全球顶级的机器学习和计算神经科学会议,今年的NIPS依然受到了学者们的高度关注,甚至由于其线上开放的特性缓解了往年抢票难的问题,而将获得更多的“听众”。
据悉,今年NeurIPS稿件录取率为20.09%,创下历史新低。在如此严苛的录取标准之下,京东AI深度学习与语音语义实验室提交的探索稀疏3D点云Global Context的论文《Group Contextual Encoding for 3D Point Clouds》成功入选。今年以来,京东AI深度学习与语音语义实验室的研究成果频获国际认可,此前还有多篇论文入选国际语音和语言处理顶会比如ACL 2020、AAAI 2020、INTERSPEECH 2020等。
Global Context对视觉感知至关重要,可以根据语义信息提高物体识别的准确率,但目前针对3D点云的Global Context的研究还不够充分,特别是在三维空间的情况下,数据呈现高维、稀疏的特点,对传统深度学习算法提出了挑战。因此,京东AI研究院基于其研究实习生计划与东京大学合作了《Group Contextual Encoding for 3D Point Clouds》,针对这一研究领域提出了Group Contextual Encoding的Global Context学习方法。
文章插图
从目前已有3D点云Global Context的研究成果来看,比如LG-PointNet++ 【1】,其复杂度为,N是输入点的个数。当场景复杂时,输入点数较多会导致耗费相当大的算力。Contextual Encoding Layer【2】的复杂度是,是一种有效率的方法,K是该方法里code word数目。但是点云数据稀疏导致的过拟合现象(overfitting),会影响性能的提升,导致在ScanNet,SUN-RGBD数据集上3D检测性能随着Code word数目K的增长,性能却很快就饱和不再增长。虽然目前有一些深度补全的算法可以解决数据稀疏这个问题,但是这些算法都存在结构复杂、耗费计算资源的问题,因此,京东AI研究院决定探索简单有效的方法。
首先要解决数据的稀疏问题。通过把特征通道分组,从而获得更多的等效数据,如图1所示,如果把通道分成G组特征子向量,数据就相对应增广了G倍。再将分组后的特征子向量通过Encoding layer得到Global context,从而有利于在分组后的特征子空间学习全局上下文, 然后通过channel attention的形式作用于分组后的特征。最后通过Concat操作恢复为原特征的尺寸。如此操作既解决了数据的稀疏问题,又解决算法结构复杂、算力耗费巨大的问题。
文章插图
图1:Group Contextual Encoding方法图。
随后,京东AI研究院又将这种方法在多个3D数集上进行验证,不仅证实这种方法简单有效,还刷新了SOTA方法的性能。将这种方法应用在PointNet++ Backbone上,并部署到VoteNet模型。如表1所示,在ScanNet数据集以mAP@0.25指标测评时,该方法领先VoteNet 【3】 2.2mAP,增幅已然明显,但更令人惊喜的是,在更加严格的mAP@0.5 的指标下,如表2所示,该方法领先Waymo、Facebook AI Research以及Stanford大学提出的 VoteNet高达6.57 mAP,可视化结果如图2所示。
表1:ScanNet数据集mAP@0.25评测指标的结果。
文章插图
表2:ScanNet数据集mAP@0.5评测指标的结果。
文章插图
文章插图
图2:ScanNet数据集的结果可视图。在SUN-RGBD数据集,我们的方法也领先VoteNet 3mAP,具体定量以及定性结果如表3和图3所示。
表3:SUN-RGBD数据集mAP@0.25评测指标的结果.
文章插图
文章插图
图3:SUN-RGBD数据集的结果可视图。
京东自2017年开始全面向技术转型,用技术重塑了京东的生态系统,逐渐突破零售边界,拓展至数字科技、物流、健康等众多领域。一直以来,消费者们更多的在购物、物流等环节体验到京东技术的进步,如今,京东在人工智能领域的长足进展不仅获得学术界的认可,也逐渐被更多的用户所知悉,京东的智能语音技术也已经在智能外呼机器人、客服语音机器人等电话交互场景中实现成熟应用,此次提出的Group Contextual Encoding方法也可以应用在下游的AR(增强现实)、MR(混合现实)以及机器人,自动驾驶等领域,推动这些领域的发展。京东技术将不仅赋能金融、医疗、教育、健康等行业,还将在更多领域为用户提供便利。
- 智能化|感知局限下,车路协同的“子弹”还得再飞会儿
- iqoo|IP68+144Hz!独显芯片+5500mAh,iQOO9 Pro不再低调
- 联想|求你们别再骂联想了,如果毁了他,享福的还是美国电脑企业
- 苹果|华为无奈,苹果“踩着”国产厂商再度登顶第一,国内市场该醒醒了
- 华为|小米再调整组织架构!销售运营负责人大换血?
- 马云|看看马云的儿子马元坤,再看看女儿马雪,网友:基因太强大了!
- 红米手机|乌鸡变凤凰?红米K50超大杯再次被确认,或要“吃掉”小米!
- 阿里巴巴|阿里再次押注网约车:出行市场巨变,滴滴这次危险了?
- 荣耀|荣耀V50再次回归!5300mAh+100W,4nm强芯坐镇
- 区块链|再不自封“元宇宙第一人”就晚了