傻大方


首页 > 潮·科技 > >

智能|《数据智能平台实践报告》—重构数据智能时代的数据基础设施( 四 )



按关键词阅读: 谷歌 rom mebook eos tube mspoweruser pwa you YouTube premium


2.3 新一代数据智能平台的架构结合前文所述的当前企业在数据管理和应用中面临的挑战,以及对一些领先企业搭建的数据智能平台的架构进行归纳总结,爱分析画出了如下图所示的数据智能平台的典型架构。
图 4: 数据智能平台典型架构
智能|《数据智能平台实践报告》—重构数据智能时代的数据基础设施
文章插图
可以看到,新一代的数据智能平台的架构至少在五个层面具有区别于传统数据平台架构的特征。
表2:数据智能平台与传统数据平台的主要区别
智能|《数据智能平台实践报告》—重构数据智能时代的数据基础设施
文章插图
3. 数据智能平台的建设方法论类似传统数据平台的构建,数据智能平台的构建是一个需要从全局进行规划和建设,并在后续运行中能够持续迭代的系统性工程,因此需要一套科学和完备的方法论指导这一过程。
爱分析通过对多家领先企业的数据智能平台实践案例进行调研,总结了数据智能平台建设过程中比较共性的最佳实践方法论,涉及的核心环节主要包括顶层战略规划、应用场景规划、基础架构设计、数据规范与数据架构设计、组织与人员规划等方面。他们构成的数据智能平台建设的主要流程,以及具体包含的内容如下图:
图 5: 数据智能平台建设的关键环节
智能|《数据智能平台实践报告》—重构数据智能时代的数据基础设施
文章插图
3.1 顶层战略规划数据智能平台是支撑企业数字化转型的新一代数据基础设施,是企业各部门各业务线共同的数据平台和数据服务体系,因此,数据智能平台的建设的核心目的是服务于企业的整体战略目标和业务目标。
同时,数据智能平台的建设不仅仅涉及技术架构,还会涉及企业的业务模式和组织架构,因此企业应当以顶层战略为起点,根据业务目标规划数据智能平台的的建设蓝图与路径。
此外,传统企业的部门墙问题明显,要实现各部门间的沟通协作,共建数据智能平台,需要企业决策层在组织架构和资源方面给予统一的调配和支持。
3.2 应用场景规划数据智能平台的价值最终需要通过业务场景中的数据应用来体现,因此,平台建设必须应用场景规划先行,数据智能平台应用场景规划需要考虑以下关键因素:
评估企业业务需求和数据现状。从具体的业务需求场景厘清相关的业务线、相关岗位和业务流程,梳理其中的业务需求。同时,对企业的数据资产进行评估,厘清企业有哪些数据、需要补充哪些数据等。
明确场景实现优先级。企业需要基于企业战略与业务目标,可实现的业务价值、数据应用的实现成本、数据应用的可行性等方面进行评估,确定哪些优先级和紧急度比较高的场景可以应用数据平台解决业务问题。
调研和参考外部案例。企业在建设数据平台前应当尽可能多地进行相关调研,并参考同行实践案例,总结相关经验。同时,可以借助有成熟经验的数据平台建设厂商帮助企业解决相关问题。
3.3 基础架构设计好的基础架构设计能够让项目快速落地,并支持在现有系统上快速开发新功能、引入新数据,而一旦选择某个技术架构并开始实施,后面出现问题再来修改的成本很高。构建新一代的数据智能平台需要在基础架构设计上考虑一下要点:
1) 引入云原生架构,以便快速开发、测试、上线和迭代数据应用,同时满足在工具集成、系统运维、以及存储和计算资源上的各种敏捷性要求。
2) 应用多种数据处理引擎应对多样化的数据分析场景需求,重点是为平台构建智能化和实时化的数据处理能力。
3)对数据和数据应用资产进行统一的管理,避免数据资产不明确、使用复杂、效益低下等问题,方便数据资产的使用、共享和复用。
3.4 数据规范与数据架构设计为了保证用户能够在数据平台中快速找到自己所需的数据,企业需要对数据架构,即数据的组织方式,以及数据规范,即数据平台中输入和输出的数据符合规范,进行合理地设计。
1) 企业需要根据业务目标及业务流程设计平台的数据架构,包括平台提供的明细数据、汇总数据、数据分析结果、数据服务等。
2) 对数据平台的输入数据和输出数据进行统一规范,如在所有业务系统中使用统一的全局ID,用原子指标、统计颗粒度、业务限定等维度来派生指标名称,构建指标体系。
3.5 组织与人员规划数据智能平台的能力与业务高度相关,因为平台的搭建需要IT部门、数据部门、以及各业务部门沟通协调,对人员进行统筹安排。根据企业数据能力现状,在集中式和去中心化两种人员模式中选其一。


稿源:(钛媒体APP)

【傻大方】网址:/c/112EL3562021.html

标题:智能|《数据智能平台实践报告》—重构数据智能时代的数据基础设施( 四 )


上一篇:数码|北航学子再破无人机续航世界纪录,但你注意到这些细节了吗?

下一篇:封装|三星图像传感器计划采用新封装技术,以降低成本