按关键词阅读:
文章插图
第三,超低延迟也是这一代NNA IP的另一个特性。据了解,通过将多个单核组成2核、4核、6核或8核的多核集群,所有内核可以相互协作,并行处理一个任务。这就降低了处理延迟,缩短响应时间。数据显示,对于一个8核集群,理想情况下延迟会减少为单核独立执行时的1/8。节省大量带宽则是Imagination新NNA的另一大优势,这主要得益于公司正在申请专利的的Tensor Tiling技术(Imagination’s Tensor Tiling,ITT),这也是Series4中新增的功能。据介绍,借助这项技术,Imagination的Series4可以通过对计算任务进行tiling,充分利用片上存储,提升数据处理效率,并节省访问外部存储的带宽。
文章插图
在具体操作中,针对不同的任务,有不同的操作方式。据了解,在批处理大量的小型任务时,Tensor Tiling能够把批处理任务分配到各个NNA单核,让每个NNA单核独立工作,提升并行处理的能力;而在面对一些大型网络的时候,Tensor Tiling则可以从多个维度拆分任务,让所有NNA单核共同执行一个推理任务。这不但减少了网络推理的延迟,在理想情况下,协同并行处理的吞吐量与独立并发处理也是相同的。值得一提的是,这里的拆分都是通过Imagination的编译器来完成的,不需要开发者手动操作,借助NNA的性能分析工具,开发者还能对AI任务进行更好的调度和分配。
文章插图
另外,因为利用本地数据的依赖性将中间数据保存在片上存储器中,ITT可以最大限度地减少将数据传输至外部存储器,从而将带宽降低多达90%。作为一种可扩展的算法,ITT在拥有大量输入数据的网络上具有显著优势。车规级安全性则是Series4不得不提的另一个优势。众所周知,汽车芯片对安全提出了更高的要求。Imagination为其全新的NNA引入了IP级别的安全功能,且产品的设计流程符合ISO 26262标准,这就能帮助客户更容易获得ISO 26262认证。据报道,Series4可以在不影响性能的情况下,安全地进行神经网络推理。硬件安全机制可以保护编译后的网络、网络的执行和数据处理管道。
文章插图
在IMG Series4 NNA的发布会上,Andrew Grant除了介绍新IP的硬件性能外,也同时讲述公司围绕这系列芯片打造的软件生态系统,这与硬件配合,加速了开发者的开发速度,简化了开发流程。而为了给汽车运算提供更多的算力支持,Imagination还打通了NNA多核平台与GPU协同,给开发者提供更多的选择。
文章插图
Andrew Grant在发布会上表示,公司的IMG Series4NNA已经开始向客户提供授权,产品也将于2020年12月在市场上全面供应。ABI Research智慧出行和汽车首席分析师James Hodgson说道:“在从L2和L3级ADAS向L4和L5级全自动驾驶演进的过程中,神经网络的广泛应用将是至关重要的因素。这些系统将要处理数以百计的复杂场景,从多个摄像头和激光雷达等大量传感器中提取数据,从而实现自动代客泊车、十字路口管理和复杂城市环境安全导航等解决方案。高性能、低延迟和高能效的结合将是实现高度自动驾驶的关键所在。”由此可见,一个全新的大门正在面向Imagination开启。*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。
今天是《半导体行业观察》为您分享的第2496期内容,欢迎关注。
推荐阅读
★中国半导体设备现状、机遇与建议
★登顶全球前十的国产芯片公司
★手机芯片市场再生变数
『半导体第一垂直媒体』
实时 专业 原创 深度
识别二维码,回复下方关键词,阅读更多
存储|晶圆|光刻|FPGA|并购|IC设计|华为|国产芯片
回复投稿,看《如何成为“半导体行业观察”的一员 》
【 持续|推出600 Tops产品,Imagination持续发力汽车AI芯片市场】回复搜索,还能轻松找到其他你感兴趣的文章!
稿源:(就要买买买)
【傻大方】网址:http://www.shadafang.com/c/111J2T2H020.html
标题:持续|推出600 Tops产品,Imagination持续发力汽车AI芯片市场( 二 )