算法|让00后疯狂的超级算法( 二 )



举个例子,两个文盲不识字,但他们俩聊天就能完全无障碍。

算法|让00后疯狂的超级算法
文章插图

这段对话里,“200次”更像是一种形容词或表达心情的感叹词,然而从语义角度,机器很难理解。

近年来,深度学习的崛起,一下子解决了计算机视觉(CV)“用手工提取特征费劲儿”的难题,所以带来了CV领域爆发性的进展。

然而从本质来看,即便是计算机视觉,也仅仅是在感知层面取得了突破,并未在下一次层——语义和逻辑推理上多大突破。这也是为何自动驾驶的“规划决策”如此难。

而比起直观的图像,必须要越过“感知”,对“高层语义、记忆、知识抽象以及逻辑推理”要求极高的自然语言处理(图像识别也需要,只是在感知阶段商业化好一些),难度显然要大,成就感更强。

算法|让00后疯狂的超级算法
文章插图

来自网上Siri的对话

你可能会质疑,怎么能说“自然语言处理”没有大规模应用?苹果的Siri、智能音箱、机器翻译,还有隐藏在各种电商与社交平台背后的算法推荐,都是这项技术的存在形式。

但实际上,这些都是“自然语言处理”山脚下最好收割的第一批果实。

就像智能音箱无论卖5000万台还是1亿台,仍然被冠以“智障”的头衔。因为,它仍然不能“理解这个世界背后的运行逻辑”——这才是山顶上最有价值的药材。

“除了写作之外,其他都不值得人工智能去研究!” 袁行远很坚决。他让这个项目,更像是一个算法工程师或科学家,在跟市场和技术难度较劲儿。

“就像‘写作文’是语文试卷上的最后一道题。它比什么下围棋,比自动驾驶和人脸识别都要难!因为难,才有做的价值!

因为图像数据是高密度、低信息量数据;而文字则是高密度,同时又高度抽象化数据,背后的数据空间比我们想像地大太多。”

当然,产业里并不只有袁行远抱有相同的“理想”。国外不但开始地更早,而且已向外界展示过自己的强大。

算法|让00后疯狂的超级算法
文章插图

微软CEO纳德拉(左)与Open AI CEO 阿特曼(右)在2021微软Build大会上

2020年5月,OpenAI 推出了被称为“全球最先进语言模型”的GPT-3。这个由马斯克等硅谷大佬在2015年支持创建的人工智能研究组织,在2018年与马斯克 Say Goodbye之后,便于第二年正式走上商业化之路,并马上接受了微软投资的10亿美元。

如今,新一代语言生成器GPT-3,被以一种云服务的方式,卖给想用它自动续写文本的机构。毋庸置疑,它建立在自然语言处理技术之上——

在网络上搜集了近1万亿字的文本,在一台嵌了几十万块处理器的超级计算机上做训练。对了,这台计算机是微软做的,后者也算是把投资的10亿美元多少收回了一些本儿。

有趣的是,英国卫报曾用GPT-3写了一篇专栏文章——《你害怕了吗?人类》。大致中心思想就是“虽然我是一个会思考的机器人,但别怕,我不会消灭你们,我是人类的命运共同体”。

算法|让00后疯狂的超级算法
文章插图

截自英国卫报

然而,我同时觉得微软这10亿美元的投资,可能有一小部分会打水漂儿。

因为在发布两年过去,这个语言生成器模型,虽然在技术层面取得了重大突破,甚至被澳大利亚哲学家与认知学家大卫·查尔莫斯称为“史上最重要、最有趣的人工智能系统之一”;但是,它并没有获得太多企业界用户的青睐——

除了以研究和训练为目的企业,只有一些“起到文本微调作用”的教育辅助工作。

虽然我没有接触过GPT-3,但同样作为另一种形式的“文本生成器”,既然关键基础技术尚未取得突破,那么彩云的故事续写算法,其实本质上也没有脱离“会犯傻”的范畴。

但的确长了几岁。

首先,虽然在续写的段落里,它不仅可以重现文本的模式,还能够在逻辑上表现十分正常,甚至比一些写拼凑水文的网文作家要好(下图,表现的确不错)。但由于对世界缺乏常识性理解,它才会不假思索说出“特朗普爱上马克龙”。或许,这是工程师们将其属性定义为“写小说”的一大原因。