巴菲特致股东的信|互金风控的三十条经验

编辑导语:每个岗位都有不同的任务和过程,风控产品也是一样的。本篇文章里,作者结合自身的过往经历,对互金风控行业做了三十条经验总结,不妨来看一下,也许会对你有所启发。

巴菲特致股东的信|互金风控的三十条经验
文章插图
我们去读历史、读哲学、学投资,永远只有极少数人会认真研读《史记》《毛泽东选集》《巴菲特致股东的信》等,极多数人只会不求甚解,但需观其大略。
闲来无事,把之前写过的文章的核心观点总结成三十条经验。再多就多了,再少又不够数,正是时候。
这些说法要么继承要么创新,我们不追求溯源,只关心致知和致用。因为我们追求的道是“日用而不知”的道。
另外,这些经验在之前的文章里有充分的论证和解释,有印象的当然也只会是少数。
写作本文缘起于,跟领导的领导的领导汇报,过多的论证和说明反而没效用,不如精准表达的核心观点。
011)风控的底层逻辑在于有效地衡量用户的还款能力、还款意愿和多头借贷。多头数据之所以如此重要,是因为某种层面上它能修正还款能力和还款意愿的计算。真的有钱和借来的钱,在能力和意愿上是不一样的。
2)大数据风控怎么做,本质就是大数据怎么用的问题。两个用法。简单地用,是策略规则;复杂地用,是模型。
3)风控之道在于前中后的用户生命周期管理。贷前管理避免损失,贷中管理减少损失,贷后管理回收损失。
4)风控之术是什么呢?就相当于问风险管理部门每天的工作本质上是在做什么,当然是做策略和模型。注意,策略做策略的事情,模型做模型的事情,切不可该通过策略做的事情硬要通过模型去做。
5)业务和风控的关系,就跟策略和模型类似,初期都是原则经验至上。经验的效益触顶,就要开始做精细化运营,这时候最需要大数据模型方案。
026)用户画像简单来说,就是用户信息的标签化。一个是基础属性,一个是风控属性。基础属性的画像,重在了解你的客户;风控属性的画像,重在理解你的业务。
7)风控决策引擎本质上是一系列规则的集合,决策流程有两要素,一是规则清单,二是规则被执行的顺序。
8)模型也可以理解成一条规则,只不过它是将许许多多的弱变量组合成一个强评分。强变量用于规则,弱变量用于模型。他们的本质都是对用户分层,方便我们将用户一分为二,使其通过或拒绝。
9)业务总会不断对策略进行迭代优化,这往往导致策略体系过于庞杂,怎么样从庞杂的体系中分清轻重是策略同学的核心能力。平衡决策对通过率的影响和对风险的影响,对成本的影响和对收益的影响,是风控策略从业者需要培养的职业嗅觉。
10)我们无法说模型重要还是策略重要,这两者都很重要,没有必要分什么高下。但如果说模型思维和策略思维呢?一定是策略思维更重要,因为策略是更贴近业务的。
0311)策略的三板斧总结起来就是分群、触达、额度定价。年龄是分群,收入是分群,多头是分群,模型也是分群,是风险的分群。分群又是额度定价的关键。别忘了触达,你还要做投放、做产品优化、做用户体验。关注转化的同时还要关注风险。
12)模型开发是为业务需求服务的,高效解决业务的难点和痛点,就是模型开发的护城河,而不是所谓的算法。如何对遇到的问题设计合理的解决方案,比模型本身重要的多得多。
13)如果你只会对确定的样本、确定的特征、确定的标签,建一个所谓的大数据模型,不管这个模型是LR,是XGB,还是神经网络,还是图算法,其实都是不够的。风控是一个业务经验很重要的领域。
14)样本选择是最能体现模型开发定位和目标的,也是最吃功夫的部分。不同模型的开发,其他的有迹可循,唯有样本的选择是各有各的不同。
15)模型开发时我们总是在关心模型效果,但当模型开发完后,最重要的是稳定性。没有策略会盯着模型分的变动反复调整阈值的。有问题的信息千万不要用。
0416)策略和模型之上,要做好监控。使用没有监控的模型,就像使用没有指针的钟表,它可能在工作,但你怎么知道呢?另外,监控一切容易,响应一切困难。
17)数据分析的三板斧,看趋势、看对比、看细分。解读监控报表亦如是。光有一个数据是无意义的,比较才能使其有洞见。怎么比?和过去比,和其他的比,分开了自己比。
18)线上如果出现问题,很难直接指向模型,因为复杂性其解释权都在模型同学手上。策略同学不要听他们的解释。问题容易出在模型上面,但不是说“锅”都是模型同学的。如果模型和策略是分开的,还是配置个模型验证团队吧。