安全|浙江大学求是讲席教授任奎:隐私计算的前沿进展


安全|浙江大学求是讲席教授任奎:隐私计算的前沿进展
文章插图
作者 | 维克多

编辑 | 青暮
2021年12月17日,浙江大学求是讲席教授、ACM Fellow、IEEE Fellow、浙江大学网络空间安全学院院长、计算机科学与技术学院副院长任奎在CNCC 2021 “迎接数字化转型的安全挑战”论坛中做了《隐私计算:向实用化迈进》的报告。
在报告中,任奎围绕数据脱敏、差分隐私、安全多方计算三个方向,讨论了隐私计算的前沿进展,提出不同技术可以在数据全生命周期的不同阶段发挥作用。
以下是演讲全文,AI科技评论做了不改变原意的删改和整理:
今天分享浙江大学网络安全学院在隐私计算方面的思考和研究,题目是《隐私计算:向实用化迈进》。

安全|浙江大学求是讲席教授任奎:隐私计算的前沿进展
文章插图

目前,随着大数据时代的到来,隐私数据泄露问题日益突出,例如国内互联网大企业由于严重违法违规收集使用个人信息被勒令下架整改,国外的拥有亿级用户的互联网大企业的个人隐私数据被泄露。因此,无论在哪个国家、科技公司还是传统行业,都在面临数据和隐私泄露问题。

安全|浙江大学求是讲席教授任奎:隐私计算的前沿进展
文章插图

在这种背景下,世界上各个国家对监管与合规的要求都变得越来越严格。从中国角度,2012年第十一届全国人民代表大会常务委员会就通过了《关于加强网络信息保护的决定》;2016年通过《中华人民共和国网络安全法》,这部代表性的法律也体现了中国对数据安全隐私的重视;尤其近两年,国家部门也从各个角度颁布相关法律,形成了比较完善的法律体系。例如《数据安全法》《个人隐私保护法》等等,其具体抓手也越来越明确。

安全|浙江大学求是讲席教授任奎:隐私计算的前沿进展
文章插图

从世界范围内来看,欧盟在《通用数据保护条例》(GDPR)落地之后,开了很多大额罚单,这既体现了日益严重的数据隐私泄露问题,也体现了越来越严格的监管合规要求,同时也给研究领域和产业领域带来了很多机会。
Gartner 在2021年对数据隐私保护战略做了预测:到2023年底,全球75%的人口的个人数据将受到现代隐私法规的保护;到2023年底之前,全球超过80%的公司将面临至少一项以隐私为重点的数据保护法规;到2024年,全球隐私驱动的数据保护和合规技术支出将突破150亿美元。因此,挑战和机遇并存,困难与希望并存。

安全|浙江大学求是讲席教授任奎:隐私计算的前沿进展
文章插图

日益严格的法律法规,也提醒我们回顾一下广义上隐私计算的涵盖范围与发展。广义上的隐私计算指 “两个或者多个参与方在不泄露各自数据的前提下,通过协作对数据进行联合计算处理。”
其实,这里隐含“安全性”和“高效性”两个关键词。从1982年安全多方计算、1983年可信计算、1985年零知识证明、2006年差分隐私到2016年联邦学习,相关技术在不断发展,都在围绕安全与效率而做努力。
隐私计算渗透影响到数据全生命周期的各个阶段。围绕数据收集、处理、存储、共享、传输、销毁的六个过程,有各种隐私计算的相关技术可以嵌入。下面主要讨论安全多方计算、差分隐私、数据脱敏三个方面。

1

安全多方计算前沿进展

安全|浙江大学求是讲席教授任奎:隐私计算的前沿进展
文章插图

安全多方计算是密码学研究的一个重要分支,通俗定义是:为解决一组互不信任的参与方之间在保护隐私信息以及没有可信第三方的前提下协同计算问题而提出的密码协议与理论框架。
狭义的安全多方计算主要包括以下两种实现方式:
安全|浙江大学求是讲席教授任奎:隐私计算的前沿进展】1. 针对布尔电路以姚氏混淆电路方式实现的两方协议;
2. 针对布尔电路或者代数电路以秘密分享方式实现的两方或者多方协议。
在广义上,全同态加密、可信硬件以及联邦学习都可以看做安全多方计算的技术框架。
在应用程度上,安全多方计算可以分为通用安全多方计算,可以支持大多数计算任务,实现常用基本计算算子协议,例如加、乘、比较、矩阵运算,将具体计算任务分解到基本算子;专用安全多方计算,以“高效实现专用实用计算任务”为目标,可以针对专用计算任务和应用场景定制多方安全计算协议,常见的专用协议包括隐私保护求交集、隐匿查询、零知识证明、联合建模等等。