NLP:词中的数学
.font_s.ios.pgc article>blockquote>p span,.font_s.ios.pgc article>ol>li span,.font_s.ios.pgc article>p span,.font_s.ios.pgc article>ul li span{font-size:16px!important}.font_m.ios.pgc article>blockquote>p span,.font_m.ios.pgc article>ol>li span,.font_m.ios.pgc article>p span,.font_m.ios.pgc article>ul li span{font-size:18px!important}.font_l.ios.pgc article>blockquote>p span,.font_l.ios.pgc article>ol>li span,.font_l.ios.pgc article>p span,.font_l.ios.pgc article>ul li span{font-size:20px!important}.font_xl.ios.pgc article>blockquote>p span,.font_xl.ios.pgc article>ol>li span,.font_xl.ios.pgc article>p span,.font_xl.ios.pgc article>ul li span{font-size:23px!important}.font_s.ios.pgc article li,.font_s.ios.pgc article p{line-height:26px!important}.font_m.ios.pgc article li,.font_m.ios.pgc article p,.ios.pgc article li,.ios.pgc article p{line-height:28px!important}.font_l.ios.pgc article li,.font_l.ios.pgc article p{line-height:30px!important}.font_xl.ios.pgc article li,.font_xl.ios.pgc article p{line-height:33px!important}@media (max-device-width:374px){.font_s.ios.pgc article>blockquote>p span,.font_s.ios.pgc article>ol>li span,.font_s.ios.pgc article>p span,.font_s.ios.pgc article>ul li span{font-size:14px!important}.font_m.ios.pgc article>blockquote>p span,.font_m.ios.pgc article>ol>li span,.font_m.ios.pgc article>p span,.font_m.ios.pgc article>ul li span{font-size:16px!important}.font_l.ios.pgc article>blockquote>p span,.font_l.ios.pgc article>ol>li span,.font_l.ios.pgc article>p span,.font_l.ios.pgc article>ul li span{font-size:18px!important}.font_xl.ios.pgc article>blockquote>p span,.font_xl.ios.pgc article>ol>li span,.font_xl.ios.pgc article>p span,.font_xl.ios.pgc article>ul li span{font-size:21px!important}.font_s.ios.pgc article li,.font_s.ios.pgc article p{line-height:26px!important}.font_m.ios.pgc article li,.font_m.ios.pgc article p,.ios.pgc article li,.ios.pgc article p{line-height:28px!important}.font_l.ios.pgc article li,.font_l.ios.pgc article p{line-height:30px!important}.font_xl.ios.pgc article li,.font_xl.ios.pgc article p{line-height:33px!important}}.font_s.android.pgc article>blockquote>p span,.font_s.android.pgc article>ol>li span,.font_s.android.pgc article>p span,.font_s.android.pgc article>ul li span{font-size:16px!important}.font_m.android.pgc article>blockquote>p span,.font_m.android.pgc article>ol>li span,.font_m.android.pgc article>p span,.font_m.android.pgc article>ul li span{font-size:18px!important}.font_l.android.pgc article>blockquote>p span,.font_l.android.pgc article>ol>li span,.font_l.android.pgc article>p span,.font_l.android.pgc article>ul li span{font-size:20px!important}.font_xl.android.pgc article>blockquote>p span,.font_xl.android.pgc article>ol>li span,.font_xl.android.pgc article>p span,.font_xl.android.pgc article>ul li span{font-size:23px!important}.font_s.android.pgc article li,.font_s.android.pgc article p{line-height:27px!important}.android.pgc article li,.android.pgc article p,.font_m.android.pgc article li,.font_m.android.pgc article p{line-height:29px!important}.font_l.android.pgc article li,.font_l.android.pgc article p{line-height:31px!important}.font_xl.android.pgc article li,.font_xl.android.pgc article p{line-height:34px!important}article>blockquote>p,article>ol>li,article>p,article>ul>li{text-indent:initial!important}article>blockquote>p span,article>ol>li span,article>p span,article>ul>li span{letter-spacing:initial!important}.font_l article>p+.article-br,.font_m article>p+.article-br,.font_s article>p+.article-br,.font_xl article>p+.article-br{display:none}.font_l article .article-br,.font_m article .article-br,.font_s article .article-br,.font_xl article .article-br{margin-top:0!important;margin-bottom:0!important}.font_s.pgc article blockquote>p{line-height:26px!important}.font_m.pgc article blockquote>p,.pgc article blockquote>p{line-height:28px!important}.font_l.pgc article blockquote>p{line-height:30px!important}.font_xl.pgc article blockquote>p{line-height:33px!important}.font_s.pgc article blockquote>p span{font-size:15px!important}.font_m.pgc article blockquote>p span{font-size:17px!important}.font_l.pgc article blockquote>p span{font-size:19px!important}.font_xl.pgc article blockquote>p span{font-size:22px!important}.pgc article p+.article-br+article-img{margin-top:-18px!important}.pgc article .article-literature.pgc-end-literature,.pgc article .article-source.pgc-end-source{margin-top:0!important;margin-bottom:0!important;line-height:24px!important}.font_s.pgc article .article-literature.pgc-end-literature,.font_s.pgc article .article-source.pgc-end-source{font-size:13px!important}.font_m.pgc article .article-literature.pgc-end-literature,.font_m.pgc article .article-source.pgc-end-source{font-size:15px!important}.font_l.pgc article .article-literature.pgc-end-literature,.font_l.pgc article .article-source.pgc-end-source{font-size:17px!important}.font_xl.pgc article .article-literature.pgc-end-literature,.font_xl.pgc article .article-source.pgc-end-source{font-size:20px!important}.font_s.pgc article .article-literature.pgc-end-literature span,.font_s.pgc article .article-source.pgc-end-source span{font-size:13px!important}.font_m.pgc article .article-literature.pgc-end-literature span,.font_m.pgc article .article-source.pgc-end-source span{font-size:15px!important}.font_l.pgc article .article-literature.pgc-end-literature span,.font_l.pgc article .article-source.pgc-end-source span{font-size:17px!important}.font_xl.pgc article .article-literature.pgc-end-literature span,.font_xl.pgc article .article-source.pgc-end-source span{font-size:20px!important}.font_s.pgc article p{margin-top:16px!important;margin-bottom:16px!important;margin-left:0!important;margin-right:0!important}.font_m.pgc article p,.pgc article p{margin-top:18px!important;margin-bottom:18px!important;margin-left:0!important;margin-right:0!important}.font_l.pgc article p{margin-top:20px!important;margin-bottom:20px!important;margin-left:0!important;margin-right:0!important}.font_xl.pgc article p{margin-top:23px!important;margin-bottom:23px!important;margin-left:0!important;margin-right:0!important}.pgc article p:first-child{margin-top:0!important}.pgc article blockquote>p:first-child{margin-top:0!important}.pgc article blockquote>p:last-child{margin-bottom:0!important}.pgc article blockquote li:first-child p{margin-top:0!important}.pgc article blockquote li:last-child p{margin-bottom:0!important}我们已经收集了一些词(词条) , 对这些词进行了计数 , 并将它们归并成词干或者词元 , 接下来就可以做一些有趣的事情了 。 分析词对一些简单的任务有用 , 例如得到词用法的一些统计信息 , 或者进行关键词检索 。 但是我们想知道哪些词对于某篇具体文档和整个语料库更重要 。 于是 , 我们可以利用这个“重要度”值 , 基于文档内的关键词重要度在语料库中寻找相关文档 。
这样做的话 , 会使我们的垃圾邮件过滤器更不可能受制于电子邮件中单个粗鲁或者几个略微垃圾的词 。 也因为有较大范围的词都带有不同正向程度的得分或标签 , 因此我们可以度量一条推文的正向或者友好程度 。 如果知道一些词在某文档内相对于剩余文档的频率 , 就可以利用这个信息来进一步修正文档的正向程度 。 在本章中 , 我们将会学习一个更精妙的非二值词度量方法 , 它能度量词及其用法在文档中的重要度 。 几十年来 , 这种做法是商业搜索引擎和垃圾邮件过滤器从自然语言中生成特征的主流做法 。
- 田伟院士:我眼中的医疗机器人
- Mozilla将默认禁用Firefox中的退格键以防止用户编辑数据丢失
- LG Stylo 7渲染图曝光:没有预想中的重大升级
- 平淡无奇中的暗自升级,2020年主板市场年终盘点
- 手机中的“哈曼卡顿”,小米11又有黑科技曝光
- 谷歌Project Zero披露了Windows中的严重安全漏洞
- 微信推出“微信豆”,可用于购买直播中的虚拟礼物,你会充值吗?
- 曾是盗版中的成功案例,还将正品公司收购,原因是“迷失了”方向
- 谷歌披露存在于高通骁龙Adreno GPU中的高危漏洞
- 朋友准备置换40台电脑,看中的配置两千多一套,大家看值不值?