[人工智能]人工智能大显神通,实现用机器学习算法:简化粒子加速器的操作!
【[人工智能]人工智能大显神通,实现用机器学习算法:简化粒子加速器的操作!】每年来自世界各地的很多科学家都会访问能源部SLAC国家加速器实验室 , 在直线加速器相干光源(LCLS)X射线激光器上进行数百项化学、材料科学、生物和能源研究的实验 。 直线加速器相干光源从巨型线性粒子加速器产生的高能电子束中产生超亮X射线 。 直线加速器相干光源的实验日以继夜地进行 , 每天有两个12小时的轮班 。
本文插图
在每次轮班开始时 , 操作员必须调整加速器的性能 , 为下一次实验准备X射线束 。 有时 , 在轮班期间也需要额外的调整 。 在过去 , 操作员每年都要花费数百个小时来完成这项任务 , 称为加速器调谐 。 现在 , SLAC国家加速器实验室的研究人员 , 开发了一种使用人工智能机器学习的新工具 , 与以前的方法相比 , 它可能会使部分调优过程快五倍 , 其研究发表在《物理评论快报》期刊上 。
人工智能机器学习
生产直线加速器相干光源强大的X射线束 , 首先要准备高质量的电子束 。 然后 , 一些电子的能量在特殊磁铁中被转化为X射线光 。 电子束的特性需要是密集和紧密聚焦的 , 这是决定X射线束好坏的关键因素 。 SLAC国家加速器实验室人工智能机器学习计划负责人、开发这项新技术的团队成员丹尼尔·拉特纳(Daniel Ratner)说:即使是电子束密度的微小差异 , 也会对最终释放出的X射线量产生巨大影响 。
本文插图
加速器使用一系列称为四极磁铁的24种特殊磁铁来聚焦电子束 , 类似于玻璃透镜聚焦光线的方式 。 一般人类操作员在轮班之间小心翼翼地转动旋钮来调节单个磁铁 , 以确保加速器产生特定实验所需的X射线束 。 这一过程占用了操作员大量的时间 , 本来他们可以花在其他重要的任务上 , 以改进用于实验的光束 。 几年前 , 直线加速器相干光源操作员采用了一种自动加速磁铁调谐的计算机算法 。
更好的光束
然而 , 它也有缺点 , 其目的是通过随机调整磁铁强度来改善X射线束 。 但与人类操作员不同的是 , 这个算法事先不知道加速器的结构 , 也不能在调整过程中做出有根据的猜测 , 最终可能会产生更好的结果 。 这就是为什么SLAC国家加速器实验室的研究人员 , 决定开发一种新的算法 , 将人工智能机器学习 , 学习如何随着时间推移变得更好的“智能”计算机程序 , 与加速器的物理知识相结合 。
本文插图
新方法使用了一种称为高斯过程的技术 , 它预测了特定加速器调整对X射线光束质量的影响 。 它还为其预测带来了不确定性 , 然后 , 算法决定尝试哪些调整以获得最大改进 。 例如 , 它可能决定尝试一次戏剧性的调整 , 其结果非常不确定 , 但可能会带来巨大的回报 。 这意味着这种新的、富有冒险精神的算法 , 比以前的算法有更好的机会进行必要调整 , 以产生尽可能最佳的X射线束 。
本文插图
SLAC国家加速器实验室的研究人员 , 还使用之前直线加速器相干光源(LCLS)操作的数据来教授算法 , 哪些磁体强度通常会导致更亮的X射线 , 这给了算法一种对应该尝试的调整 , 做出有根据的猜测方法 。 这为算法配备了人类操作员自然拥有的专业知识 , 而之前的算法缺乏这些知识和专业知识 。 对磁铁相互关系的洞察也改进了这项技术 , 四极磁铁是成对工作的 。
超越直线加速器相干光源
- 湖南省人工智能产业联盟每日AI报0510
- 掘金界参与主,5月8日,由全球领先的人工智能平台公司商汤科技SenseTime
- 埃尔法哥哥人工智能与人类的未来
- AI途人工智能时代:AI“创作”的著作权归属
- 前瞻产业研究院2020年中国人工智能行业市场规模及竞争格局分析:百度夺得数桂冠【组图】
- 大科技杂志社想说爱你不容易,人工智能
- 眷诚法务人工智能的法律主体资格分析
- c114通信网1.4亿!新华三首次中标中国移动人工智能通用计算设备集采
- Hornet黄蜂您在日常生活中使用的10个人工智能示例
- 埃尔法哥哥人工智能,将如何引发教育领域系统变革?