同位旋是啥东西 同位旋是什么

在前面的文章中,我们已经说完了电子的发现过程,电子电荷值的测量,还算出了原子的质量和体积的大小 。
这些工作都是在1906年之前完成的,那到了1911年卢瑟福就宣布发现了原子核,1913年,团队成员斯莱夫测量了原子核的核电荷数,发现原子核的核电荷数和它在元素周期表中的位置序数是一样的 。

同位旋是啥东西 同位旋是什么

文章插图
这时我们就知道了氢原子核有一个单位的核电荷数,那氦就有两个,一直到92号铀元素,它的核心有92个核电荷数 。
而且我们根据相对原子质量这个概念,也能够看出来,原子的质量大约就是氢原子质量的整数倍,所以这个时候人们就猜测,原子的原子核是由氢原子核以及电子构成的 。
比如,在氢原子里面,就只有一个氢原子核,所以它的单位电荷数是1,相对原子质量大约也是1,那氦原子里面就应该有四个氢原子核和两个电子,这样的话才能保证电子抵消两个单位的核电荷数,留下两个,而且还能保证氦原子的质量是氢原子质量的4倍 。
这样想法还不错,在当时挺好用的,根据这个规则,可以一直排列到铀元素,铀的相对原子质量为238,原子序数为92,根据设想在它的核心里面应该会有146个电子 。
同位旋是啥东西 同位旋是什么

文章插图
这就是在1932年中子发现以前,人们对原子核结构的设想,而且在期间卢瑟福的一个发现,还多多少少验证了这个想法 。
就在1917年的时候,卢瑟福就发现利用α粒子轰击一些轻原子核,可以导致轻原子的核发生分裂,它当时先观察到的现象是这样的,有一次他给一些金属的表面涂上了放射性镭元素,结果发现摆在附近的硫化锌荧光屏出现了闪光 。
这你可能会想,这种现象有啥奇怪的,肯定镭元素释放的α粒子撞击了荧光屏,才导致了闪光 。但事情可没这么简单,卢瑟福发现荧光屏摆放的位置超过了α粒子在空气中的飞行距离 。
这说明打在荧光屏上的粒子不是α粒子,那是不是β粒子呢?这东西飞的距离可比α粒子远多了,加上电磁场一测就发现这种粒子是氢原子核,也就是我们现在所说的质子 。
同位旋是啥东西 同位旋是什么

文章插图
那质子又是怎么来的?卢瑟福为了确认氢原子核的来源,就重新设计了实验,他让α粒子经过氮气,结果发现α粒子可以把氮原子核中的一个质子给敲出来,卢瑟福一测,这就是氢原子核 。
那么以上就是人类最早发现的核裂变,也是发现质子的过程,其实质子也不用发现,人们已经知道有这么个东西,就是氢原子核,就像我刚才说的,人们还用这个东西去构建其他原子核呢 。
那卢瑟福的实验无非就是再次证实以前的观点,再加上人们在1906年发现的放射性衰变中β粒子,也是从原子核中射出来的,所以以上的证据都表明了,原子核是由质子和电子构成的 。而且卢瑟福还在1920年的时候提出了中子的概念,认为他是质子和电子复合物,电中性相对原子质量是1 。很明显这跟我们今天所说的中子是不一样的 。
这样的想法一直持续了几十年的时间,到了1932年,人们就发现了一个无法解释的现象,才动摇地以上的想法,促成了中子的发现 。
这个发现也跟α粒子有关,在1930年的时候,物理学家博特和贝克尔就发现,用α粒子去轰击铍元素,它释放出来的射线比质子和电子的穿透能力强得太多了,而且不能被电磁偏转,所以他俩就猜测,根据以往的经验这一定是类似于γ射线的电磁波 。
同位旋是啥东西 同位旋是什么

文章插图
到了1932年,伊伦娜和约里奥-居里,这是居里夫人的女儿和女婿,他俩就用铍射线去轰击石蜡,石蜡是一种富氢物质,里面有很多氢原子,他俩就发现铍射线可以打出石蜡中的质子 。
这一点并不奇怪,但是令他们惊讶的是铍射线打出来的质子的速度非常高,速度就意味着动能,动能就是能量,他俩一算,结果发现能量在这个过程中不守恒了,如果铍射线是电磁波的话,它与质子的碰撞就属于康普顿散射,根据质子的动能我们就能算出电磁波的能量,结果发现铍射线,也就是他俩认为的电磁波所携带的能量是产生它的α粒子所携带能量的10倍 。得到这个结果以后,居里夫妇没有怀疑铍射线的本质问题,而是怀疑能量在微观层面可能不守恒了,让他们错过了一次重大的发现 。