以上便是今天关于举例说明国产拉曼光谱仪用于检测的三个方面的全部分享了,希望对大家今后使用本设备能有帮助 。
拉曼光谱仪的基本原理是什么?当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射 。大部分光只是改变方向发生散射,而光的频率仍与激发光的频率相同,这种散射称为瑞利散射;约占总散射光强度的10-6~10-10的散射,不仅改变了光的传播方向,而且散射光的频率也改变了,不同于激发光的频率,称为拉曼散射 。拉曼散射中频率减少的称为斯托克斯散射,频率增加的散射称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,拉曼光谱仪通常测定的大多是斯托克斯散射,也统称为拉曼散射 。散射光与入射光之间的频率差v称为拉曼位移,拉曼位移与入射光频率无关,它只与散射分子本身的结构有关 。拉曼散射是由于分子极化率的改变而产生的 。拉曼位移取决于分子振动能及的变化,不同化学键或基团有特征的分子振动,ΔE反映了指定能级的变化,因此与之对应的拉曼位移也是特征的 。这是拉曼光谱可以作为分子结构定性分析的依据 。
拉曼光谱仪主要应用在哪些领域【拉曼光谱仪是测什么的?它的原理是什么?】1、拉曼光谱在化学研究中的应用
拉曼光谱在有机化学方面主要是用作结构鉴定和分子相互作用的手段,它与红外光谱互为补充,可以鉴别特殊的结构特征或特征基团 。拉曼位移的大小、强度及拉曼峰形状是鉴定化学键、官能团的重要依据 。利用偏振特性,拉曼光谱还可以作为分子异构体判断的依据 。在无机化合物中金属离子和配位体间的共价键常具有拉曼活性,由此拉曼光谱可提供有关配位化合物的组成、结构和稳定性等信息 。另外,许多无机化合物具有多种晶型结构,它们具有不同的拉曼活性,因此用拉曼光谱能测定和鉴别红外光谱无法完成的无机化合物的晶型结构 。
在催化化学中,拉曼光谱能够提供催化剂本身以及表面上物种的结构信息,还可以对催化剂制备过程进行实时研究 。同时,激光拉曼光谱是研究电极/溶液界面的结构和性能的重要方法,能够在分子水平上深入研究电化学界面结构、吸附和反应等基础问题并应用于电催化、腐蚀和电镀等领域 。
2、拉曼光谱在高分子材料中的应用
拉曼光谱可提供聚合物材料结构方面的许多重要信息 。如分子结构与组成、立体规整性、结晶与去向、分子相互作用,以及表面和界面的结构等 。从拉曼峰的宽度可以表征高分子材料的立体化学纯度 。如无规立场试样或头-头,头-尾结构混杂的样品,拉曼峰是弱而宽,而高度有序样品具有强而尖锐的拉曼峰 。研究内容包括:
(1)化学结构和立构性判断:高分子中的C=C、C-C、S-S、C-S、N-N等骨架对拉曼光谱非常敏感,常用来研究高分子的化学组份和结构 。
(2)组分定量分析:拉曼散射强度与高分子的浓度成线性关系,给高分子组分含量分析带来方便 。
(3)晶相与无定形相的表征以及聚合物结晶过程和结晶度的监测 。
(4)动力学过程研究:伴随高分子反应的动力学过程如聚合、裂解、水解和结晶等 。相应的拉曼光谱某些特征谱带会有强度的改变 。
(5)高分子取向研究:高分子链的各向异性必然带来对光散射的各向异性,测量分子的拉曼带退偏比可以得到分子构型或构象等方面的重要信息 。
(6)聚合物共混物的相容性以及分子相互作用研究 。
(7)复合材料应力松弛和应变过程的监测 。
(8)聚合反应过程和聚合物固化过程监控 。
3、拉曼光谱技术在材料科学研究中的应用
拉曼光谱在材料科学中是物质结构研究的有力工具,在相组成界面、晶界等课题中可以做很多工作 。包括:
(1)薄膜结构材料拉曼研究:拉曼光谱已成CVD(化学气相沉积法)制备薄膜的检测和鉴定手段 。拉曼可以研究单、多、微和非晶硅结构以及硼化非晶硅、氢化非晶硅、金刚石、类金刚石等层状薄膜的结构 。
(2)超晶格材料研究:可通过测量超晶格中的应变层的拉曼频移计算出应变层的应力,根据拉曼峰的对称性,知道晶格的完整性 。
(3)半导体材料研究:拉曼光谱可测出经离子注入后的半导体损伤分布,可测出半磁半导体的组分,外延层的质量,外延层混品的组分载流子浓度 。
(4)耐高温材料的相结构拉曼研究 。
(5)全碳分子的拉曼研究 。
(6)纳米材料的量子尺寸效应研究 。
4、拉曼光谱在生物学研究中的应用
- 家和开来橱柜好吗
- 防伪二维码是什么
- 尚酷是什么车型
- 亚克力板品牌有哪些
- 上海杉达学院是几本,好不好?
- sin cos tan 30 60 90度分别是多少
- “绊脚石”是什么意思?
- 为什么我和男朋友PPP 他每次一到门口顶几下就ruan 了啊?还没进就ruan 了 每次都是这样
- 重启键盘快捷键是什么
- 手机送不出声音是什么原因